Partially Averaged Navier–Stokes k-ω Modeling of Thermal Mixing in T-Junctions
Abstract
1. Introduction
2. Benchmark Case and CFD Modeling
2.1. WATLON T-Junction
2.2. Computational Domain
2.3. Turbulence Modeling
2.3.1. LES
2.3.2. Partially Averaged Navier–Stokes
2.4. Meshing and Convergence Study
2.5. Numerical Settings
3. Results and Discussion
3.1. PANS Model Consistency Criteria
3.2. Vortex Structures
3.3. Velocity Field
3.4. Temperature Field
3.5. Spectral Analysis
3.6. Cost–Benefit Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, B.L.; Mahaffy, J.H.; Angele, K. A CFD benchmarking exercise based on flow mixing in a T-junction. Nucl. Eng. Des. 2013, 264, 80–88. [Google Scholar] [CrossRef]
- Höhne, T. Scale resolved simulations of the OECD/NEA–Vattenfall T-junction benchmark. Nucl. Eng. Des. 2014, 269, 149–154. [Google Scholar] [CrossRef]
- Ayhan, H.; Sökmen, C.N. CFD modeling of thermal mixing in a T-junction geometry using LES model. Nucl. Eng. Des. 2012, 253, 183–191. [Google Scholar] [CrossRef]
- Kuczaj, A.K.; Komen, E.M.J. An Assessment of Large-Eddy Simulation Toward Thermal Fatigue Prediction. Nucl. Technol. 2017, 170, 2–15. [Google Scholar] [CrossRef]
- Timperi, A. Comparison of Wall Treatments and Meshes in Large-Eddy Simulations of Mixing Tees. Nucl. Technol. 2018, 204, 25–40. [Google Scholar] [CrossRef]
- Feng, J.; Xu, L.; Baglietto, E. Assessing the Applicability of the Structure-Based Turbulence Resolution Approach to Nuclear Safety-Related Issues. Fluids 2021, 6, 61. [Google Scholar] [CrossRef]
- De Santis, A.; Shams, A. Assessment of different URANS models for the prediction of the unsteady thermal mixing in a T-junction. Ann. Nucl. Energy 2018, 121, 501–512. [Google Scholar] [CrossRef]
- Kang, D.G.; Na, H.; Lee, C.Y. Detached eddy simulation of turbulent and thermal mixing in a T-junction. Ann. Nucl. Energy 2019, 124, 245–256. [Google Scholar] [CrossRef]
- Lampunio, L.; Duan, Y.; Eaton, M.D. The effect of inlet flow conditions upon thermal mixing and conjugate heat transfer within the wall of a T-Junction. Nucl. Eng. Des. 2021, 385, 111484. [Google Scholar] [CrossRef]
- Shams, A.; Edh, N.; Angele, K.; Veber, P.; Howard, R.; Braillard, O.; Chapuliot, S.; Severac, E.; Karabaki, E.; Seichter, J.; et al. Synthesis of a CFD benchmarking exercise for a T-junction with wall. Nucl. Eng. Des. 2018, 330, 199–216. [Google Scholar] [CrossRef]
- Kuschewski, M.; Kulenovic, R.; Laurien, E. Experimental setup for the investigation of fluid–structure interactions in a T-junction. Nucl. Eng. Des. 2013, 264, 223–230. [Google Scholar] [CrossRef]
- Selvam, P.K.; Kulenovic, R.; Laurien, E. Large eddy simulation on thermal mixing of fluids in a T-junction with conjugate heat transfer. Nucl. Eng. Des. 2015, 284, 238–246. [Google Scholar] [CrossRef]
- Kamide, H.; Igarashi, M.; Kawashima, S.; Kimura, N.; Hayashi, K. Study on mixing behavior in a tee piping and numerical analyses for evaluation of thermal striping. Nucl. Eng. Des. 2009, 239, 58–67. [Google Scholar] [CrossRef]
- Baranova, T.A.; Zhukova, Y.V.; Chorny, A.D.; Skrypnik, A.; Popov, I.A. Non-Isothermal Vortex Flow in the T-Junction Pipe. Energies 2021, 14, 7002. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Pao, W.; Ejaz, F.; Ya, H. A preliminary numerical investigation of thermal mixing efficiency in T-junctions with different flow configurations. Int. J. Heat Technol. 2021, 39, 1590–1600. [Google Scholar] [CrossRef]
- Feng, J.; Baglietto, E.; Tanimoto, K.; Kondo, Y. Demonstration of the STRUCT turbulence model for mesh consistent resolution of unsteady thermal mixing in a T-junction. Nucl. Eng. Des. 2020, 361, 110572. [Google Scholar] [CrossRef]
- Feng, J.; Frahi, T.; Baglietto, E. STRUCTure-based URANS simulations of thermal mixing in T-junctions. Nucl. Eng. Des. 2018, 340, 275–299. [Google Scholar] [CrossRef]
- Girimaji, S.S. Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech. 2006, 73, 413–421. [Google Scholar] [CrossRef]
- Busco, G. Spatio-Temporal Turbulent Characterization of a Nuclear Reactor Fuel Assembly with Spacer Grid. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2020. [Google Scholar]
- Busco, G.; Hassan, Y.A. Space and energy-based turbulent scale-resolving simulations of flow in a 5 × 5 nuclear reactor core fuel assembly with a spacer grid. Int. J. Heat Fluid Flow 2018, 71, 420–441. [Google Scholar] [CrossRef]
- Li, H.; Anand, N.K.; Hassan, Y.A. Computational study of turbulent flow interaction between twin rectangular jets. Int. J. Heat Mass Transf. 2018, 119, 752–767. [Google Scholar] [CrossRef]
- Bilal, A.; Gao, P. Partially Averaged Navier Stokes Simulations of Turbulent Thermal Mixing in T-Junction. In Proceedings of the 2022 29th International Conference on Nuclear Engineering, Shenzhen, China, 8–12 August 2022. [Google Scholar]
- Bilal, A.; Gao, P. Numerical study of thermal mixing phenomenon using partially averaged Navier-Stokes. Nucl. Eng. Des. 2023, 408, 112321. [Google Scholar] [CrossRef]
- Utanohara, Y.; Nakamura, A.; Miyoshi, K.; Kasahara, N. Numerical simulation of long-period fluid temperature fluctuation at a mixing tee for the thermal fatigue problem. Nucl. Eng. Des. 2016, 305, 639–652. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Girimaji, S.S.; Srinivasan, R.; Jeong, E. PANS turbulence model for seamless transition between RANS and LES: Fixed-point analysis and preliminary results. In Proceedings of the Fluids Engineering Division Summer Meeting, Honolulu, HI, USA, 6–10 July 2003; pp. 1901–1909. [Google Scholar]
- Lakshmipathy, S.; Girimaji, S. Partially-averaged Navier-Stokes method for turbulent flows: k-w model implementation. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 January 2006. [Google Scholar]
- Wilcox, D.C. Multiscale model for turbulent flows. AIAA J. 1988, 26, 1311–1320. [Google Scholar] [CrossRef]
- Abdol-Hamid, K.S.; Girimaji, S.S. A Two-Stage Procedure Toward the Efficient Implementation of PANS and Other Hybrid Turbulence Models; BiblioGov: Asheville, NC, USA, 2004. [Google Scholar]
- Addad, Y.; Gaitonde, U.; Laurence, D.; Rolfo, S. Optimal unstructured meshing for large eddy simulations. In Quality and Reliability of Large-Eddy Simulations; Springer: Berlin/Heidelberg, Germany, 2008; pp. 93–103. [Google Scholar]
- Razi, P.; Tazraei, P.; Girimaji, S. Partially-averaged Navier–Stokes (PANS) simulations of flow separation over smooth curved surfaces. Int. J. Heat Fluid Flow 2017, 66, 157–171. [Google Scholar] [CrossRef]




















| Inlet | Temperature [°C] | Pipe Diameter [mm] | Inlet Velocity [m/s] | Flow Regime |
|---|---|---|---|---|
| Main | 48 | 150 | 1.46 | Turbulent |
| Branch | 33 | 50 | 1.0 | Turbulent |
| Quantity | Value | Units |
|---|---|---|
| Density | 992.09 | [kg/m3] |
| Specific heat | 4178.55 | [J/(kg·K)] |
| Thermal conductivity | 0.6311 | [W/(m·K)] |
| Dynamic viscosity | 6.652 × 10−4 | [N·s/m2] |
| Mesh | Number of Cells [Million] | Δaxial (z = 0) [mm] | Δaxial (z = 7Dm) [mm] | Δtangential [mm] | Δnormal [mm] |
|---|---|---|---|---|---|
| Mesh 1 | 2.2 | 2.9 | 5.9 | 2.9 | 0.01 |
| Mesh 2 | 4.5 | 2.2 | 4.7 | 2.2 | 0.008 |
| Mesh 3 | 8.4 | 1.76 | 3.6 | 1.76 | 0.0055 |
| Case | Time Step [s] | Average Courant Number |
|---|---|---|
| PANS-0.6 k-ε | 0.001 | 0.3416 |
| PANS-0.6 k-ω | 0.001 | 0.3480 |
| PANS-0.3 k-ε | 0.00075 | 0.3298 |
| PANS-0.3 k-ω | 0.00075 | 0.3334 |
| LES | 0.0004 | 0.2212 |
| Case | Recirculation Length (mm) |
|---|---|
| PANS-0.6 k-ε | 20.4 |
| PANS-0.6 k-ω | 19.8 |
| PANS-0.3 k-ε | 18.9 |
| PANS-0.3 k-ω | 15.3 |
| Case | No. of Cores | CPU-Hours | Wall Clock (h) |
|---|---|---|---|
| PANS-0.6 k-ε | 32 | 3200 | 100 |
| PANS-0.6 k-ω | 32 | 2800 | 87.5 |
| PANS-0.3 k-ε | 32 | 6700 | 209.4 |
| PANS-0.3 k-ω | 32 | 5300 | 165.6 |
| LES | 64 | 24,000 | 375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bilal, A.; Gao, P.; Khalid, M.I.; Hussain, A.; Mansoor, A. Partially Averaged Navier–Stokes k-ω Modeling of Thermal Mixing in T-Junctions. J. Nucl. Eng. 2026, 7, 2. https://doi.org/10.3390/jne7010002
Bilal A, Gao P, Khalid MI, Hussain A, Mansoor A. Partially Averaged Navier–Stokes k-ω Modeling of Thermal Mixing in T-Junctions. Journal of Nuclear Engineering. 2026; 7(1):2. https://doi.org/10.3390/jne7010002
Chicago/Turabian StyleBilal, Ashhar, Puzhen Gao, Muhammad Irfan Khalid, Abid Hussain, and Ali Mansoor. 2026. "Partially Averaged Navier–Stokes k-ω Modeling of Thermal Mixing in T-Junctions" Journal of Nuclear Engineering 7, no. 1: 2. https://doi.org/10.3390/jne7010002
APA StyleBilal, A., Gao, P., Khalid, M. I., Hussain, A., & Mansoor, A. (2026). Partially Averaged Navier–Stokes k-ω Modeling of Thermal Mixing in T-Junctions. Journal of Nuclear Engineering, 7(1), 2. https://doi.org/10.3390/jne7010002

