Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution
Abstract
1. Introduction
2. Experimental Section
2.1. Synthesis of P-Doped Tubular Carbon Nitride
2.2. Synthesis of Cs-Doped Carbon Nitride
2.3. Synthesis of P-Cs Co-Doped Tubular Carbon Nitride
3. Results and Discussion
3.1. Characterization of Material Structure
3.2. Optical Properties and Charge Carrier Behavior
3.3. Evaluation of Photocatalytic Hydrogen Evolution Performance
3.4. Proposed Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gunawan, D.; Zhang, J.J.; Li, Q.Y.; Toe, C.Y.; Scott, J.; Antonietti, M.; Guo, J.H.; Amal, R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. Adv. Mater. 2024, 36, 2404618. [Google Scholar] [CrossRef]
- Zhou, P.; Ahmed Navid, I.; Ma, Y.J.; Xiao, Y.X.; Wang, P.; Ye, Z.W.; Zhou, B.W.; Sun, K.; Mi, Z.T. Solar-to-hydrogen Wfficiency of More Than 9% in Photocatalytic Water Splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Islam, M.; Gupta, A. ZnO nanowire-decorated 3D printed pyrolytic carbon for solar light-driven photocatalytic degradation of wastewater contaminants. Adv. Compos. Hybrid Mater. 2025, 8, 109. [Google Scholar] [CrossRef]
- Lan, R.M.; Hu, Z.F.; Liu, H.R.; Shen, K.; Wang, H.; Hou, T.T.; Li, Y.W. Passivating Lattice Oxygen in ZnO Nanocrystals to Reduce its Interactions with the Key Intermediates for a Selective Photocatalytic Methane Oxidation to Methanol. Angew. Chem. Int. Ed. 2025, 64, e202425186. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Yan, Y.Q.; Deng, Y.X.; Huang, W.Y.; Yang, K.; Lu, K.Q. Rational construction of S-scheme CdS quantum dots/In2O3 hollow nanotubes heterojunction for enhanced photocatalytic H2 evolution. Chin. J. Catal. 2025, 70, 333–340. [Google Scholar] [CrossRef]
- Sun, R.J.; Zhu, Z.J.; Tian, N.; Zhang, Y.H.; Huang, H.W. Hydrogen Bonds and In Situ Photoinduced Metallic Bi0/Ni0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202408862. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhang, L.; Chen, S.; Sun, S.M.; Cheng, H.; Li, S.Z.; Yu, J.Y.; Ding, B.; Yan, J.H. Synthesis of Heteromorphic Bi2WO6 Films with an Interpenetrate 1D/2D Network Structure for Efficient and Stable Photocatalytic Degradation of VOCs. Adv. Mater. 2024, 36, 2407400. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Z.P.; Shi, Y.; Tang, R.D.; Li, W.B.; Deng, Y.C.; Huang, Y. Donor–Acceptor Type Carbon Nitride Photocatalysts in Photocatalysis: Current Understanding, Applications and Challenges. Small 2025, 21, 2409903. [Google Scholar] [CrossRef]
- Pan, Y.L.; Zhang, Q.; Huang, G.Z.; Luo, Y.N.; Gao, H.L. Efficient photocatalytic H2 evolution over tubular mesoporous carbon nitride with N-vacancy by microwave-assisted synthesis. Sci. China Chem. 2025, 68, 866–873. [Google Scholar] [CrossRef]
- Wan, S.P.; Ou, M.; Wang, Y.N.; Zeng, Y.Q.; Xiong, Y.H.; Song, F.J.; Ding, J.; Cai, W.; Zhang, S.L.; Zhong, Q. Protonic acid-assisted universal synthesis of defect abundant multifunction carbon nitride semiconductor for highly-efficient visible light photocatalytic applications. Appl. Catal. B Environ. 2019, 258, 118011. [Google Scholar] [CrossRef]
- Bi, L.B.; Shen, J.M.; Yan, P.W.; Fu, G.; Zhang, J.X.; Kang, J.; Wang, B.Y.; Li, L.H.; Zhou, Y.C.; Chen, Z.L. Efficient photodegradation of micropollutants by tubular carbon nitride: The role of nitrogen defects. J. Clean. Prod. 2023, 419, 138328. [Google Scholar] [CrossRef]
- Yue, J.P.; Yang, H.P.; Zhou, L.; Liu, C.; Wang, S.; Kang, X.D. H2O2 photosynthesis on doubly heteroatom (K and Na) intercalated carbon nitride: Collaboration and division of boosting in-layer and inter-layer carrier transfer. Chem. Eng. J. 2025, 505, 159434. [Google Scholar] [CrossRef]
- Palani, G.; Apsari, R.; Hanafiah, M.M.; Venkateswarlu, K.; Lakkaboyana, S.K.; Kannan, K.; Shivanna, A.T.; Idris, A.M.; Yadav, C.H. Metal-Doped Graphitic Carbon Nitride Nanomaterials for Photocatalytic Environmental Applications—A Review. Nanomaterials 2022, 12, 1754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Chen, C.C.; Liu, F.T.; Zhang, Z.G.; Fang, X.M.; Liu, Q. Elucidating the tandem synergistic roles of Cs-O dual sites confined in carbon nitride toward selective photoreduction H2O2 production coupled with xylose oxidation. Chem. Eng. J. 2025, 509, 161204. [Google Scholar] [CrossRef]
- Zhao, B.X.; Gong, W.; Liu, X.M.; Liu, X.M.; Guo, H.Q.; Yan, L.S.; Gao, A.L. Ternary Synergism: Synthesis of S, C Co-doped g-C3N4 hexagonal ultra-thin tubular composite photocatalyst for efficient visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 2024, 61, 1317. [Google Scholar] [CrossRef]
- Mahvelati-Shamsabadi, T.; Fattahimoghaddam, H.; Lee, B.K.; Ryu, H.; Jang, J.I. Caesium sites coordinated in Boron-doped porous and wrinkled graphitic carbon nitride nanosheets for efficient charge carrier separation and Transfer: Photocatalytic H2 and H2O2 production. Chem. Eng. J. 2021, 423, 130067. [Google Scholar] [CrossRef]
- Ran, J.R.; Ma, T.Y.; Gao, G.P.; Du, X.W.; Qiao, S.Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 2015, 8, 3708–3717. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Zhang, H.; Shen, Z.R.; Ji, H.M. The role of Cs dopants for improved activation of molecular oxygen and degradation of tetracycline over carbon nitride. Chin. Chem. Lett. 2022, 33, 4756–4760. [Google Scholar] [CrossRef]
- Tong, H.J.; Odutola, J.; Song, J.S.; Peng, L.; Tkachenko, N.; Antonietti, M.; Pelicano, C.M. Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H2O2 Evolution via Controllable n → π* Electronic Transition Activation. Adv. Mater. 2024, 36, 2412753. [Google Scholar] [CrossRef]
- Qin, J.N.; Barrio, J.; Peng, G.M.; Tzadikov, J.; Abisdris, L.; Volokh, M.; Shalom, M. Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nat. Commun. 2020, 11, 4701. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Liu, X.; Liu, C.B.; Wang, L.L.; Xia, Y.C.; Zhang, S.Q.; Luo, S.L.; Pei, Y. Scalable One-Step Production of Porous Oxygen-Doped G-C3N4 Nanorods with Effective Electron Separation for Excellent Visible-Light Photocatalytic Activity. Appl. Catal. B Environ. 2018, 224, 1–9. [Google Scholar] [CrossRef]
- Zhao, X.L.; Zhang, Y.G.; Li, F.; Wang, Y.F.; Pan, W.D.; Leung, D.Y.C. Salt-Air Template Synthesis of Na and O Doped Porous Graphitic Carbon Nitride Nanorods with Exceptional Photocatalytic H2 Evolution Activity. Carbon 2021, 179, 42–52. [Google Scholar] [CrossRef]
- You, Z.Y.; Li, G.; Wang, C.H.; Li, Q.B.; Zheng, Y.M. The synergistic effect of potassium ions and nitrogen defects on carbon nitride for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 15934–15943. [Google Scholar] [CrossRef]
- Dong, J.T.; Zhao, J.Z.; Yan, X.W.; Li, L.N.; Liu, G.P.; Ji, M.X.; Wang, B.; She, Y.B.; Li, H.M.; Xia, J.X. Construction of carbonized polymer dots/potassium doped carbon nitride nanosheets Van der Waals heterojunction by ball milling method for facilitating photocatalytic CO2 reduction performance in pure water. Appl. Catal. B Environ. Energy 2024, 351, 123993. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, M.m.; Liu, J.; Xu, J.x.; Lin, H.f.; Xing, J.; Wang, L. Anchoring Ag Atom on Carbon Vacancy Enriched Carbon Nitride to Synergistically Promote CO2 Photoredution with Water. Adv. Funct. Mater. 2024, 35, 2413232. [Google Scholar] [CrossRef]
- Jiang, M.; Zhu, Y.x.; Jia, Z.t.; Zhong, X.; Sun, Q.; Wang, Y.; Yao, J. Boron and Oxygen Dual-Doped Carbon Nitride Nanotubes with Frustrated Lewis Pairs for Efficient Electrocatalytic Ammonia Synthesis. Small Methods 2024, 9, 2401672. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zhang, X.; Jiang, Z.X.; Chen, H.S.; Yang, P. Phosphorus and sulphur co-doping of g-C3N4 nanotubes with tunable architectures for superior photocatalytic H2 evolution. Int. J. Hydrogen Energy 2019, 44, 20042–20055. [Google Scholar] [CrossRef]
- Jang, D.; Lee, S.; Kwon, N.H.; Kim, T.; Park, S.; Jang, K.Y.; Yoon, E.; Choi, S.; Han, J.; Lee, T.W.; et al. Preparation of carbon nitride nanotubes with P-doping and their photocatalytic properties for hydrogen evolution. Carbon 2023, 208, 290–302. [Google Scholar] [CrossRef]
- Adnan, M.; Lee, W.; Irshad, Z.; Kim, S.; Yun, S.; Han, H.; Chang, H.S.; Lim, J. Managing Interfacial Defects and Charge-Carriers Dynamics by a Cesium-Doped SnO2 for Air Stable Perovskite Solar Cells. Small 2024, 20, 2402268. [Google Scholar] [CrossRef]
- Wu, B.G.; Jiang, B.J.; Guo, C.L.; Zhang, J.W.; Li, Q.; Wang, N.; Song, Z.; Tian, C.; Antonietti, M.; Fu, H. Mild-Condition Photocatalytic Reforming of Methanol-Water by a Hierarchical, Asymmetry Carbon Nitride. Angew. Chem. Int. Ed. 2024, 64, 6525–6534. [Google Scholar] [CrossRef]
- Ma, M.M.; Li, J.Z.; Zhu, X.G.; Liu, K.; Huang, K.G.; Yuan, G.D.; Yue, S.Z.; Wang, Z.J.; Qu, S.C. Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting. Carbon Energy 2023, 6, e447. [Google Scholar] [CrossRef]
- Li, Z.Y.; Chen, Y.G.; Zhang, Y.H.; Ai, W.; Lei, Q.; Yao, T.J.; Zhong, D.; Liu, W.J.; Jin, W.B.; Yang, L. Tuning interfacial charge transfer for efficient visible-light-driven photodegradation and simultaneous H2 evolution. J. Mater. Sci. Technol. 2024, 168, 35–49. [Google Scholar] [CrossRef]
- Li, G.Q.; Liang, H.O.; Fan, X.Y.; Lv, X.L.; Sun, X.W.; Wang, H.G.; Bai, J. Modulating and optimizing 2D/2D Fe-Ni2P/ZnIn2S4 with S vacancy through surface engineering for efficient photocatalytic H2 evolution. Mater. Chem. A 2023, 11, 14809–14818. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, Z.; Fang, J.Z.; Peng, F. Modulation of π-Electron Density in Ultrathin 2D Layers of Graphite Carbon Nitride for Efficient Photocatalytic Hydrogen Production. Small 2024, 20, 2404929. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Wang, R.H.; Chen, Z.J.; Deng, S.M.; Huang, C.Z.; Luo, W.J.; Chen, H. Highly-efficient photocatalytic hydrogen evolution triggered by spatial confinement effects over co-crystal templated boron-doped carbon nitride hollow nanotubes. J. Mater. Chem. A 2023, 11, 7584–7595. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Y.P.; Wang, Y.Y.; Fang, J.S.; Qi, Y.Q.; Zhou, Y.M.; Bu, X.H.; Zhuo, S.P. Carbon and Phosphorus Co-doped Carbon Nitride Hollow Tube for Improved Photocatalytic Hydrogen Evolution. J. Colloid Inter. Sci. 2022, 616, 152–162. [Google Scholar] [CrossRef]
- Chen, M.H.; Xiong, J.; Li, X.Y.; Shi, Q.; Li, T.; Feng, Y.Q.; Zhang, B. In-Situ doping strategy for improving the photocatalytic hydrogen evolution performance of covalent triazine frameworks. Sci. China Chem. 2023, 66, 2363–2370. [Google Scholar] [CrossRef]
- Wang, H.T.; Jiang, J.Z.; Yu, L.L.; Peng, J.H.; Song, Z.; Xiong, J.G.; Li, N.; Xiang, K.; Zou, J.; Hsu, J.; et al. Tailoring Advanced N-Defective and S-Doped g-C3N4 for Photocatalytic H2 Evolution. Small 2023, 19, 2301116. [Google Scholar] [CrossRef]
- Pang, Y.Y.; Li, L.J.; Bu, Q.J.; Zhang, R.; Lin, Y.H.; Xie, T.F. Stimulating Protonation Capability by Eliminating Detrimental Defects in Crystalline Carbon Nitride for Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2025, 2501108. [Google Scholar] [CrossRef]
- Wang, X.H.; Xue, S.; Shi, T.Y.; Shi, T.Y.; Zhao, Z.M.; Song, A.L.; Li, G.C.; Wang, L.; Huang, J.F.; Meng, A.L.; et al. Localized Phosphorization Manipulating Internal Electric Field Orientation in Carbon Nitride Homojunction for Efficient Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2025, 2424853. [Google Scholar] [CrossRef]
- Xing, W.N.; Shao, W.F.; Li, Y.F.; Lin, H.G.; Han, J.G.; Zou, L.Y.; Jia, R.; Wu, G.Y. Rapid Charge Transfer Endowed by Heteroatom Doped Z-Scheme Van Der Waals Heterojunction for Boosting Photocatalytic Hydrogen Evolution. Small 2025, 21, 2412036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Zhang, C.; Zhao, G.F.; Gao, Y.S.; Zhuang, T.; Lv, Z.G. Single-atom Pt supported on defective graphitic carbon nitride for efficient photocatalytic hydrogen production. Chem. Eng. J. 2025, 505, 159567. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Xu, Q.H.; Wang, Y.Q.; Cao, Y.Y.; Zeng, X.J.; Xie, Y.; Yu, Z.X. Electron regulation accelerates photocatalytic hydrogen evolution for bimetallic Pt, Au on CdS nanorods. Chem. Eng. J. 2025, 511, 162016. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, S.; Cui, W.G.; Li, S.J.; Tian, L.; Yuan, X.G.; Tariq, W.; Yao, K.L.; Zhi, Y.F.; Hu, T.D.; et al. Integrating photocatalytic hydrogen evolution with antibiotic degradation over a dual Z-scheme heterojunction. Chem. Eng. J. 2025, 510, 160317. [Google Scholar] [CrossRef]
- Wang, W.B.; Liu, J.; Cui, M.X.; Li, X.H.; Niu, L.Y.; Wu, X.; Chen, Y.N.; Li, X.W.; Zhu, H.C.; Wang, D.; et al. Z-type ZnIn2S4 homojunction for high performance photocatalytic hydrogen evolution. Chem. Eng. J. 2025, 507, 160370. [Google Scholar] [CrossRef]
- Fang, H.X.; Guo, H.; Niu, C.G.; Liang, C.; Huang, D.W.; Tang, N.; Liu, H.Y.; Yang, Y.Y.; Li, L. Hollow tubular graphitic carbon nitride catalyst with adjustable nitrogen vacancy: Enhanced optical absorption and carrier separation for improving photocatalytic activity. Chem. Eng. J. 2020, 402, 126185. [Google Scholar] [CrossRef]
- Du, J.; Li, S.M.; Du, Z.G.; Meng, S.M.; Li, B. Boron/oxygen-codoped graphitic carbon nitride nanomesh for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 407, 127114. [Google Scholar] [CrossRef]
- Ali, A.; Tsuyoshi, M.; Sagiri, W.; Maki, Y.; Tadashi, E.; Pavel, A. Determination of enantiomeric excess of carboxylates by fluorescent macrocyclic sensors. Chem. Sci. 2016, 7, 2016–2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Lin, X.; Jiang, B.; Zhang, H.; Li, Y. Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Hydrogen 2025, 6, 45. https://doi.org/10.3390/hydrogen6030045
Gao J, Lin X, Jiang B, Zhang H, Li Y. Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Hydrogen. 2025; 6(3):45. https://doi.org/10.3390/hydrogen6030045
Chicago/Turabian StyleGao, Juanfeng, Xiao Lin, Bowen Jiang, Haiyan Zhang, and Youji Li. 2025. "Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution" Hydrogen 6, no. 3: 45. https://doi.org/10.3390/hydrogen6030045
APA StyleGao, J., Lin, X., Jiang, B., Zhang, H., & Li, Y. (2025). Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Hydrogen, 6(3), 45. https://doi.org/10.3390/hydrogen6030045