Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production
Abstract
:1. Introduction
2. Z-Schemes Family Based on Cu
3. H2 Production by Z-Schemes Based on Cu
3.1. Cu Oxides-Based Z-Schemes (Family)
Photocatalyst | Fabrication Methodology | Irradiation Source | H2 Production Activity and AQE | Reference |
---|---|---|---|---|
Cu2O/TiO2 | Photodeposition | Xe lamp (300 W) | 32.6 mmol g−1 h−1 AQE: 53.5% (350 nm) SA | [69] |
Cu2O/TiO2 | Adsorption-reduction | Xe lamp | 11 mmol g−1 h−1 AQE: 15.1% (365 nm) SA | [70] |
TiO2/Ag/Cu2O | Impregnation-calcination/ Photodeposition | Xe lamp (300 W) | 874.7 μmol g−1 h−1 AQE: 2.3% (365 nm) SA | [71] |
TiO2/FTO/Cu2O | Impregnation-calcination/ Electrodeposition | Xe lamp (300 W) | 200 μmol m−2 AQE: NA SA | [72] |
Cu2O/ZnO | Impregnation | Xe lamp (150 W) | 208.9 μmol g−1 h−1 AQE: 8.8% (500 nm) SA | [74] |
ZnO/Cu2O-CuO | Thermal oxidation | Xe lamp (150 W) | 1.1 mmol g−1 h−1 AQE: 3.0% SA | [75] |
Cu2O/g-C3N4 | Recrystallization–calcination | Xe lamp (300 W, λ ≥ 420 nm) | 5.8 mmol g−1 h−1 AQE: 13.4% SA | [76] |
Cu2O/g-C3N4 | Impregnation | Xe lamp (500 W, λ ≥ 400 nm) | 480.6 μmol g−1 h−1 AQE: NA SA | [77] |
Cu(OH)2/Cu2O/g-C3N4 | Sonoprecipitation/ Impregnation | Metal halide lamp (150 W, UV cut-off) | 622.0 μmol g−1 h−1 AQE: NA SA | [78] |
S-Cu2O/g-C3N4 | Sonication | Xe lamp (300 W, λ ≥ 420 nm) | 620.7 μmol g−1 h−1 AQE: NA SA | [79] |
Au/g-C3N4/Cu2O | Impregnation | Xe lamp (500 W, λ ≥ 400 nm) | 552.6 μmol g−1 h−1 AQE: NA SA | [80] |
RGO-Cu2O/Fe2O3 | Hydrothermal | Xe lamp (300 W, λ ≥ 420 nm) | 4.86 μmol g−1 h−1 AQE: NA | [81] |
RGO-Cu2O/Bi2WO6 | Solvothermal | Xe lamp (300 W, λ ≥ 420 nm) | 1.80 μmol g−1 h−1 AQE: NA | [82] |
CuO/PI | Solvothermal | Xe lamp (300 W, λ ≥ 420 nm) | 104.6 μmol g−1 h−1 AQE: 5.8% (450 nm) SA | [83] |
g-C3N4/TiO2/CuO | Impregnation | Xe lamp (300 W) | 97.5 μmol g−1 h−1 AQE: NA SA | [84] |
CuO/CdS/CoWO4 | Microwave | Xe lamp (300 W, λ ≥ 420 nm) | 457.9 μmol g−1 h−1 AQE: NA SA | [87] |
ZnO/CuO/Au | Sol–gel | Xe lamp (300 W, λ ≥ 400 nm) | 4.7 mmol g−1 h−1 AQE: NA SA | [88] |
Ti3AlC2/CuO/NiO | Sonication–Calcination | Solar simulator | 20.7 mmol g−1 h−1 AQE: 14.2% (365 nm) SA | [90] |
IrO2/Bi20TiO32/CuFeO2/rGO | Impregnation | Xe lamp (500 W) | 1.1 mmol g−1 h−1 AQE: 4.8% | [91] |
CuBi2O4/Na-TiO2 | Hydrothermal | Xe lamp (300 W) | 2.7 mmol g−1 h−1 AQE: NA SA | [92] |
CuWO4/TiO2 | Impregnation | Solar simulator | 106.7 mmol g−1 h−1 AQE: NA SA | [94] |
CuWO4/TiO2 | Hydrothermal | Hg lamp (500 W) | 9.85 mmol g−1 h−1 AQE: NA SA | [95] |
CuMO4/γ-GY | Hot solvent | NA | 4 mmol g−1 h−1 AQE: NA SA | [96] |
3.2. Cu Sulfides-Based Z-Schemes (Family)
Photocatalyst | Fabrication Methodology | Irradiation Source | H2 Production Activity and AQE | Reference |
---|---|---|---|---|
ZnO/ZnS/Cu2S | Sputtering–Sulfidation | Xe lamp (150 W, λ ≤ 400 nm) | 436 μmol g−1 h−1 AQE: 0.86% (420 nm) SA | [99] |
Cu2S/ZnCdS | Hydrothermal | 5 W LED | 5.9 mmol g−1 h−1 AQE: 2.13% (400 nm) SA | [100] |
Cu2S/Zn0.67C0.33dS | Hydrothermal | Xe lamp (300 W, λ ≥ 420 nm) | 15.3 mmol g−1 h−1 AQE: 18.15% (420 nm) SA | [101] |
CuS/Ag2O/g-C3N4 | Hydrothermal–Precipitation | Solar simulator | 1.8 mmol g−1 h−1 AQE: NA SA | [103] |
CuS/CdS | Cation exchange | Xe lamp (300 W, λ ≥ 420 nm) | 13.4 mmol g−1 h−1 AQE: NA SA | [104] |
NiCo2O4/CuS | Electrostatic self-assembly | Solar simulator | 6.0 mmol g−1 h−1 AQE: NA SA | [105] |
Cu7S4/MnS | Cation exchange | Xe lamp (300 W) | 718 μmol g−1 h−1 AQE: 18.8% (420 nm) SA | [107] |
Cu7S4/CdS | Cation exchange | Xe lamp (300 W, λ ≥ 420 nm) | 21.6 mmol g−1 h−1 AQE: 14.4% SA | [108] |
g-C3N4/CuInS2 | Hydrothermal | Xe lamp (300 W, λ ≥ 420 nm) | 1.3 mmol g−1 h−1 AQE: 5.6% (400 nm) SA | [110] |
Au/CuInS2/g-C3N4 | Impregnation/Photodeposition | Xe lamp (300 W) | 10.7 mmol g−1 h−1 AQE: NA SA | [111] |
Pt-CuInS2/CdS | Impregnation | Xe lamp (300 W, λ ≥ 420 nm) | 20.5 μmol g−1 h−1 AQE: 0.3% (380 nm) SA | [112] |
Ti3C2/TiO2/CuInS2 | Hydrothermal | Xe lamp (300 W) | 356.3 μmol g−1 h−1 AQE: 1.9% (350 nm) SA | [113] |
Cd0.5Zn0.5S/CuInS2 | Solvothermal | Xe lamp (300 W, λ ≥ 420 nm) | 7.7 mmol g−1 h−1 AQE: 1.25% (420 nm) SA | [114] |
(CuGa)0.5ZnS2/RGO-(CoOx/BiVO4) | Impregnation | Xe lamp (300 W, λ ≥ 420 nm) | 128 μmol g−1 h−1 AQE: 0.8% (440 nm) SA | [115] |
(CuGa)0.5ZnS2/(CoOx/BiVO4) | Impregnation | Xe lamp (300 W, λ ≥ 420 nm) | 44.7 μmol g−1 h−1 AQE: NA SA | [116] |
Cu2NiSnS4/TiO2 | Hydrothermal | Solar simulator | 7.1 mmol g−1 h−1 AQE: NA SA | [117] |
Cu2ZnSnS4/Cu2O | Solvothermal | Xe lamp (300 W, λ ≥ 420 nm) | 897 μmol g−1 h−1 AQE: NA SA | [118] |
3.3. Cu Phosphide-Based Z-Schemes (Family)
Photocatalyst | Fabrication Methodology | Irradiation Source | H2 Production Activity (µmol g−1 h−1) and AQE | Reference |
---|---|---|---|---|
Bi2WO6-Cu3P | Mechanical ball milling | Xe lamp (AM 1.5G) | 40.6 AQE: NA SA | [125] |
Cu3P/g-C3N4 | Phosphorization | Xe lamp (300 W, λ ≥ 420 nm) | 808 AQE: NA SA | [126] |
Cu3P/ZnIn2S4 | Solution-phase hybridization method | Xe lamp (300 W, λ ≥ 420 nm) | 2561.1 AQE: NA AQE: 22.3% (420 nm) SA | [127] |
Cu3P/TiO2 | Hydrothermal method | Xe lamp (300 W, λ ≥ 420 nm) | 607.5 AQE: NA SA | [128] |
Cu3P/Zn0.5Cd0.5S | In situ phosphidation method | Xe lamp (300 W, λ ≥ 420 nm) | 2700 AQE: NA SA | [129] |
CoP/Cu3P/Ni2P | Hydrothermal and phosphating | 5 W LED white light (λ ≥ 420 nm) | 786.58 AQE: 3.69% (420 nm) SA | [131] |
3.4. Other Cu-Based Z-Schemes (Family)
Photocatalyst | Fabrication Methodology | Irradiation Source | H2 Production Activity and AQE | Reference |
---|---|---|---|---|
Co9S8/GDY/CuI | Hydrothermal | 5 W LED | 1.4 mmol g−1 h−1 AQE: NA SA | [133] |
CuI/GDY/CdS-R | Hydrothermal | 5 W LED | 16.2 mmol g−1 h−1 AQE: 6.11% (450 nm) SA | [134] |
GDY/CuI/MIL-53 | Ultrasonication | 5 W LED | 596.8 μmol g−1 h−1 AQE: NA SA | [135] |
GDY/CuI/NiTiO3 | Impregnation | 5 W LED | 509.03 μmol g−1 h−1 AQE: NA SA | [136] |
Co3(PO4)2/CuI/GDY | Hot solvent | 5 W LED | 319.4 μmol g−1 h−1 AQE: NA SA | [137] |
CoFe LDH/CuI/GDY | Solvothermal | 5 W LED | 1.2 mmol g−1 h−1 AQE: NA SA | [138] |
GDY/CuI/NiV LDH | Hot solvent | 5 W LED | 2.9 mmol g−1 h−1 AQE: 0.15% (420 nm) SA | [139] |
GDY/CuI/MoO2 | Hot solvent | 5 W LED | 820 μmol g−1 h−1 AQE: 4.2% (520 nm) SA | [140] |
Cu-MOF/Mn0.05Cd0.95S | Hydrothermal | 5 W LED | 13.7 mmol g−1 h−1 AQE: 1.83% (450 nm) SA | [142] |
Cu-MOF/CdS | Impregnation | 5 W LED | 4 mmol g−1 h−1 AQE: NA SA | [143] |
La5Ti2Cu0.9Ag0.1S5O7/BiVO4 | Particle transfer | Xe lamp (300 W, λ ≥ 420 nm) | 2.75 μmol cm−2 h−1 AQE: 4.9% (420 nm) SA | [144] |
4. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Chen, C.; Pinar, M.; Stengos, T. Renewable Energy Consumption and Economic Growth Nexus: Evidence from a Threshold Model. Energy Policy 2020, 139, 111295. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the Fuel for 21st Century. Int. J. Hydrogen Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an Energy Vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Lubitz, W.; Tumas, W. Hydrogen: An Overview. Chem. Rev. 2007, 107, 3900–3903. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review; Springer International Publishing: Midtown Manhattan, NY, USA, 2022; Volume 20, ISBN 0123456789. [Google Scholar]
- Sazali, N. Emerging Technologies by Hydrogen: A Review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.S.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Fajrina, N.; Tahir, M. A Critical Review in Strategies to Improve Photocatalytic Water Splitting towards Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 540–577. [Google Scholar] [CrossRef]
- Li, R.; Li, C. Chapter One—Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2017; Volume 60, pp. 1–57. [Google Scholar]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Maeda, K. Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments. J. Photochem. Photobiol. C Photochem. Rev. 2011, 12, 237–268. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Domen, K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Peiris, S.; de Silva, H.B.; Ranasinghe, K.N.; Bandara, S.V.; Perera, I.R. Recent Development and Future Prospects of TiO2 Photocatalysis. J. Chin. Chem. Soc. 2021, 68, 738–769. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Xu, T.; Ji, W.; Zong, X. Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 EV) for Solar Water Splitting. Catalysts 2023, 13, 728. [Google Scholar] [CrossRef]
- Sumesh, C.K.; Peter, S.C. Two-Dimensional Semiconductor Transition Metal Based Chalcogenide Based Heterostructures for Water Splitting Applications. Dalt. Trans. 2019, 48, 12772–12802. [Google Scholar] [CrossRef]
- Mikaeili, F.; Gilmore, T.; Gouma, P.I. Photochemical Water Splitting via Transition Metal Oxides. Catalysts 2022, 12, 1303. [Google Scholar] [CrossRef]
- Zindrou, A.; Belles, L.; Deligiannakis, Y. Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity. Solar 2023, 3, 87–112. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Ithisuphalap, K.; Wu, G.; Li, Q. Recent Advances in Cu-Based Nanocomposite Photocatalysts for CO2 Conversion to Solar Fuels. J. Energy Chem. 2017, 26, 1039–1049. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Meena, B.; Subramanyam, P.; Suryakala, D.; Subrahmanyam, C. Emerging Copper-Based Semiconducting Materials for Photocathodic Applications in Solar Driven Water Splitting. Catalysts 2022, 12, 1198. [Google Scholar] [CrossRef]
- Amorós-Pérez, A.; Cano-Casanova, L.; Castillo-Deltell, A.; Lillo-Ródenas, M.Á.; Román-Martínez, M.d.C. TiO2 Modification with Transition Metallic Species (Cr, Co, Ni, and Cu) for Photocatalytic Abatement of Acetic Acid in Liquid Phase and Propene in Gas Phase. Materials 2019, 12, 40. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Navlani-García, M.; Verma, P.; Berenguer-Murcia, Á.; Mori, K.; Kuwahara, Y.; Yamashita, H.; Cazorla-Amorós, D. Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes. Catal. Today 2021, 364, 182–189. [Google Scholar] [CrossRef]
- Cao, Q.; Che, R.; Chen, N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Appl. Catal. B. 2015, 162, 187–195. [Google Scholar] [CrossRef]
- Luo, J.; Dai, Z.; Feng, M.; Gu, M.; Xie, Y. Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst. Nano Res. 2023, 16, 371–376. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts 2017, 7, 318. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, P.; Cui, Y.; Fu, X.; Wang, Y. Recent Progress in Copper-Based Inorganic Nanostructure Photocatalysts: Properties, Synthesis and Photocatalysis Applications. Mater. Today Sustain. 2023, 21, 100276. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Su, W.; Xing, Y. Photocatalytic CO2 reduction over Copper-Based Materials: A Review. J. CO2 Util. 2022, 61, 102056. [Google Scholar] [CrossRef]
- Aguirre, M.E.; Zhou, R.; Eugene, A.J.; Guzman, M.I.; Grela, M.A. Cu2O/TiO2 Heterostructures for CO2 Reduction through a Direct Z-Scheme: Protecting Cu2O from Photocorrosion. Appl. Catal. B Environ. 2017, 217, 485–493. [Google Scholar] [CrossRef]
- Toe, C.Y.; Scott, J.; Amal, R.; Ng, Y.H. Recent Advances in Suppressing the Photocorrosion of Cuprous Oxide for Photocatalytic and Photoelectrochemical Energy Conversion. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 191–211. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Zhao, X.; Yin, M.; Feng, L.; Wang, H. Simultaneous Nitrogen Doping and Cu2O Oxidization by One-Step Plasma Treatment toward Nitrogen-Doped Cu2O@CuO Heterostructure: An Efficient Photocatalyst for H2O2 Evolution under Visible Light. Appl. Surf. Sci. 2020, 527, 146908. [Google Scholar] [CrossRef]
- Lai, T.H.; Tsao, C.W.; Fang, M.J.; Wu, J.Y.; Chang, Y.P.; Chiu, Y.H.; Hsieh, P.Y.; Kuo, M.Y.; Chang, K.D.; Hsu, Y.J. Au@Cu2O Core-Shell and Au@Cu2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2022, 14, 40771–40783. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Tong, G.B.; Qadir, K.W.; Mehmood, M.S.; Rasuli, R. Cu2O/InGaN Heterojunction Thin Films with Enhanced Photoelectrochemical Activity for Solar Water Splitting. Renew. Energy 2020, 156, 602–609. [Google Scholar] [CrossRef]
- Xi, Z.; Li, C.; Zhang, L.; Xing, M.; Zhang, J. Synergistic Effect of Cu2O/TiO2 Heterostructure Nanoparticle and Its High H2 Evolution Activity. Int. J. Hydrogen Energy 2014, 39, 6345–6353. [Google Scholar] [CrossRef]
- Tian, L.; Guan, X.; Zong, S.; Dai, A.; Qu, J. Cocatalysts for Photocatalytic Overall Water Splitting: A Mini Review. Catalysts 2023, 13, 355. [Google Scholar] [CrossRef]
- Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Noble Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angew. Chem. Int. Ed. 2006, 45, 7806–7809. [Google Scholar] [CrossRef]
- Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. Chem. Rev. 2018, 118, 5201–5241. [Google Scholar] [CrossRef]
- Dogutan, D.K.; Nocera, D.G. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Acc. Chem. Res. 2019, 52, 3143–3148. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Abdul Nasir, J.; Munir, A.; Ahmad, N.; Haq, T.; Khan, Z.; Rehman, Z. Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments. Adv. Mater. 2021, 33, 1–41. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Greco, R.; Navlani-García, M.; Cao, W.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. g-C3N4-Based Direct Z-Scheme Photocatalysts for Environmental Applications. Catalysts 2022, 12, 1137. [Google Scholar] [CrossRef]
- Huang, D.; Chen, S.; Zeng, G.; Gong, X.; Zhou, C.; Cheng, M.; Xue, W.; Yan, X.; Li, J. Artificial Z-Scheme Photocatalytic System: What Have Been Done and Where to Go? Coord. Chem. Rev. 2019, 385, 44–80. [Google Scholar] [CrossRef]
- Kumar, R.; Sudhaik, A.; Khan, A.A.P.; Raizada, P.; Asiri, A.M.; Mohapatra, S.; Thakur, S.; Thakur, V.K.; Singh, P. Current Status on Designing of Dual Z-Scheme Photocatalysts for Energy and Environmental Applications. J. Ind. Eng. Chem. 2022, 106, 340–355. [Google Scholar] [CrossRef]
- Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X.; et al. Efficient Solar Hydrogen Production by Photocatalytic Water Splitting: From Fundamental Study to Pilot Demonstration. Int. J. Hydrogen Energy 2010, 35, 7087–7097. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akyiyama, S.; Watanabe, T.; et al. Photocatalytic Solar Hydrogen Production from Water on a 100-m2 Scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef]
- Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vo, D.V.N.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V.D. Photocatalysis for Removal of Environmental Pollutants and Fuel Production: A Review. Environ. Chem. Lett. 2021, 19, 441–463. [Google Scholar] [CrossRef]
- Zhang, W.; Mohamed, A.R.; Ong, W.J. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Ed. 2020, 59, 22894–22915. [Google Scholar] [CrossRef]
- Zhao, Y.; Linghu, X.; Shu, Y.; Zhang, J.; Chen, Z.; Wu, Y.; Shan, D.; Wang, B. Classification and Catalytic Mechanisms of Heterojunction Photocatalysts and the Application of Titanium Dioxide (TiO2)-Based Heterojunctions in Environmental Remediation. J. Environ. Chem. Eng. 2022, 10, 108077. [Google Scholar] [CrossRef]
- Muscetta, M.; Andreozzi, R.; Clarizia, L.; Di Somma, I.; Marotta, R. Hydrogen Production through Photoreforming Processes over Cu2O/TiO2 Composite Materials: A Mini-Review. Int. J. Hydrogen Energy 2020, 45, 28531–28552. [Google Scholar] [CrossRef]
- Liao, G.; Li, C.; Liu, S.Y.; Fang, B.; Yang, H. Z-Scheme Systems: From Fundamental Principles to Characterization, Synthesis, and Photocatalytic Fuel-Conversion Applications. Phys. Rep. 2022, 983, 1–41. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Fornasiero, P. Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-Catalysts. ChemCatChem 2019, 11, 368–382. [Google Scholar] [CrossRef]
- Wang, L.; Bie, C.; Yu, J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem. 2022, 4, 973–983. [Google Scholar] [CrossRef]
- Bard, A.J. Photoelectrochemistry and Heterogeneous Photo-Catalysis at Semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Jourshabani, M.; Lee, B.K.; Shariatinia, Z. From Traditional Strategies to Z-Scheme Configuration in Graphitic Carbon Nitride Photocatalysts: Recent Progress and Future Challenges. Appl. Catal. B Environ. 2020, 276, 119157. [Google Scholar] [CrossRef]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System. Nat. Mater. 2006, 5, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Guo, R.T.; Hong, L.F.; Ji, X.Y.; Lin, Z.D.; Li, Z.S.; Pan, W.G. A Review of Metal Oxide-Based Z-Scheme Heterojunction Photocatalysts: Actualities and Developments. Mater. Today Energy 2021, 21, 100829. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced Photocatalytic Performance of Direct Z-Scheme g-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Khosla, A.; Kumar Sharma, S.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F.J. A Review on S-Scheme and Dual S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution, Water Detoxification and CO2 Reduction. Fuel 2023, 333, 126267. [Google Scholar] [CrossRef]
- Bao, Y.; Song, S.; Yao, G.; Jiang, S. S-Scheme Photocatalytic Systems. Sol. RRL 2021, 5, 2100118. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Mohtar, S.S.; Aziz, F.; Mhamad, S.A.; Aziz, M. Review of Various Strategies to Boost the Photocatalytic Activity of the Cuprous Oxide-Based Photocatalyst. J. Environ. Chem. Eng. 2021, 9, 105138. [Google Scholar] [CrossRef]
- Hernández-Alonso, M.D.; Fresno, F.; Suárez, S.; Coronado, J.M. Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities. Energy Environ. Sci. 2009, 2, 1231–1257. [Google Scholar] [CrossRef]
- Wei, T.; Zhu, Y.N.; An, X.; Liu, L.M.; Cao, X.; Liu, H.; Qu, J. Defect Modulation of Z-Scheme TiO2/Cu2O Photocatalysts for Durable Water Splitting. ACS Catal. 2019, 9, 8346–8354. [Google Scholar] [CrossRef]
- Lv, S.; Wang, Y.; Zhou, Y.; Liu, Q.; Song, C.; Wang, D. Oxygen Vacancy Stimulated Direct Z-Scheme of Mesoporous Cu2O/TiO2 for Enhanced Photocatalytic Hydrogen Production from Water and Seawater. J. Alloys Compd. 2021, 868, 159144. [Google Scholar] [CrossRef]
- Fu, J.; Cao, S.; Yu, J. Dual Z-Scheme Charge Transfer in TiO2–Ag–Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation. J. Mater. 2015, 1, 124–133. [Google Scholar] [CrossRef]
- Zhu, H.; Zhen, C.; Chen, X.; Feng, S.; Li, B.; Du, Y.; Liu, G.; Cheng, H.M. Patterning Alternate TiO2 and Cu2O Strips on a Conductive Substrate as Film Photocatalyst for Z-Scheme Photocatalytic Water Splitting. Sci. Bull. 2022, 67, 2420–2427. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Park, B.H.; Park, H.; Kim, T.; Yoon, S.J.; Kim, Y.; Son, N.; Kang, M. S-Scheme Assisted Cu2O/ZnO Flower-Shaped Heterojunction Catalyst for Breakthrough Hydrogen Evolution by Water Splitting. Int. J. Hydrogen Energy 2021, 46, 38319–38335. [Google Scholar] [CrossRef]
- Yoo, H.; Kahng, S.; Hyeun Kim, J. Z-Scheme Assisted ZnO/Cu2O-CuO Photocatalysts to Increase Photoactive Electrons in Hydrogen Evolution by Water Splitting. Sol. Energy Mater. Sol. Cells 2020, 204, 110211. [Google Scholar] [CrossRef]
- Xu, B.; Wang, B.; Zhang, H.; Yang, P. Z-Scheme Cu2O Nanoparticle/Graphite Carbon Nitride Nanosheet Heterojunctions for Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 2022, 5, 8475–8483. [Google Scholar] [CrossRef]
- Dai, B.; Li, Y.; Xu, J.; Sun, C.; Li, S.; Zhao, W. Photocatalytic Oxidation of Tetracycline, Reduction of Hexavalent Chromium and Hydrogen Evolution by Cu2O/g-C3N4 S-Scheme Photocatalyst: Performance and Mechanism Insight. Appl. Surf. Sci. 2022, 592, 153309. [Google Scholar] [CrossRef]
- Mahzoon, S.; Haghighi, M.; Nowee, M.; Zeinalzdeh, H. Sonoprecipitation Design of Novel Efficient All-Solid Z-Scheme Cu(OH)2/Cu2O/C3N4 Nanophotocatalyst Applied in Water Splitting for H2 Production: Synergetic Effect of Cu-Based Cocatalyst (Cu(OH)2) and Electron Mediator (Cu). Sol. Energy Mater. Sol. Cells 2021, 219, 110772. [Google Scholar] [CrossRef]
- Gu, Y.; Bao, A.; Zhang, X.; Yan, J.; Du, Q.; Zhang, M.; Qi, X. Facile Fabrication of Sulfur-Doped Cu2O and g-C3N4 with Z-Scheme Structure for Enhanced Photocatalytic Water Splitting Performance. Mater. Chem. Phys. 2021, 266, 124542. [Google Scholar] [CrossRef]
- Mu, F.; Miao, X.; Cao, J.; Zhao, W.; Yang, G.; Zeng, H.; Li, S.; Sun, C. Integration of Plasmonic Effect and S-Scheme Heterojunction into Gold Decorated Carbon Nitride/Cuprous Oxide Catalyst for Photocatalysis. J. Clean. Prod. 2022, 360, 131948. [Google Scholar] [CrossRef]
- Shen, H.; Liu, G.; Yan, X.; Jiang, J.; Hong, Y.; Yan, M.; Mao, B.; Li, D.; Fan, W.; Shi, W. All-Solid-State Z-Scheme System of RGO-Cu2O/Fe2O3 for Simultaneous Hydrogen Production and Tetracycline Degradation. Mater. Today Energy 2017, 5, 312–319. [Google Scholar] [CrossRef]
- Shen, H.; Liu, G.; Zhao, Y.; Li, D.; Jiang, J.; Ding, J.; Mao, B.; Shen, H.; Kim, K.S.; Shi, W. Artificial All-Solid-State System by RGO Bridged Cu2O and Bi2WO6 for Z-Scheme H2 Production and Tetracycline Degradation. Fuel 2020, 259, 116311. [Google Scholar] [CrossRef]
- Mohammed Ali, M.J.; Radhy, M.M.; Mashkoor, S.J.; Ali, E.M. Synthesis and Characterization of Copper Oxide Nanoparticles and Their Application for Solar Cell. Mater. Today Proc. 2022, 60, 917–921. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Zeng, Y.; Wang, R. Synthesis of CuO Micro-Sphere Combined with g-C3N4 Using Cu2O as Precursor for Enhanced Photocatalytic Hydrogen Evolution. Mater. Lett. 2016, 178, 308–311. [Google Scholar] [CrossRef]
- Chu, S.; Hu, Y.; Zhang, J.; Cui, Z.; Shi, J.; Wang, Y.; Zou, Z. Constructing Direct Z-Scheme CuO/PI Heterojunction for Photocatalytic Hydrogen Evolution from Water under Solar Driven. Int. J. Hydrogen Energy 2021, 46, 9064–9076. [Google Scholar] [CrossRef]
- Dai, L.; Sun, F.; Fu, P.; Li, H. Enhanced Photocatalytic Hydrogen Evolution and Ammonia Sensitivity of Double-Heterojunction g-C3N4/TiO2/CuO. RSC Adv. 2022, 12, 13381–13392. [Google Scholar] [CrossRef]
- Güy, N.; Atacan, K.; Özacar, M. Rational Construction of P-n-p CuO/CdS/CoWO4 S-Scheme Heterojunction with Influential Separation and Directional Transfer of Interfacial Photocarriers for Boosted Photocatalytic H2 Evolution. Renew. Energy 2022, 195, 107–120. [Google Scholar] [CrossRef]
- Ahmad, I.; Shukrullah, S.; Naz, M.Y.; Bhatti, H.N.; Khalid, N.R.; Ullah, S. Rational Design of ZnO–CuO–Au S-Scheme Heterojunctions for Photocatalytic Hydrogen Production under Visible Light. Int. J. Hydrogen Energy 2023, 48, 12683–12698. [Google Scholar] [CrossRef]
- Subha, N.; Mahalakshmi, M.; Myilsamy, M.; Neppolian, B.; Murugesan, V. Direct Z-Scheme Heterojunction Nanocomposite for the Enhanced Solar H2 Production. Appl. Catal. A Gen. 2018, 553, 43–51. [Google Scholar] [CrossRef]
- Kannan, K.; Gautam, J.; Chanda, D.; Meshesha, M.M.; Jang, S.G.; Yang, B.L. Two Dimensional MAX Supported Copper Oxide/Nickel Oxide/MAX as an Efficient and Novel Photocatalyst for Hydrogen Evolution. Int. J. Hydrogen Energy 2023, 48, 7273–7283. [Google Scholar] [CrossRef]
- Su, W.N.; Ayele, D.W.; Chen, H.M.; Pan, C.J.; Ochie, V.; Chiang, K.T.; Rick, J.; Hwang, B.J. A Wireless and Redox Mediator-Free Z-Scheme Twin Reactor for the Separate Evolution of Hydrogen and Oxygen. Mater. Today Energy 2019, 12, 208–214. [Google Scholar] [CrossRef]
- Mao, J.X.; Wang, J.C.; Gao, H.; Shi, W.; Jiang, H.P.; Hou, Y.; Li, R.; Zhang, W.; Liu, L. S-Scheme Heterojunction of CuBi2O4 Supported Na Doped P25 for Enhanced Photocatalytic H2 Evolution. Int. J. Hydrogen Energy 2022, 47, 8214–8223. [Google Scholar] [CrossRef]
- Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations. ACS Catal. 2018, 8, 10809–10825. [Google Scholar] [CrossRef]
- Bharagav, U.; Reddy, N.R.; Rao, V.N.; Ravi, P.; Sathish, M.; Shankar, M.V.; Kumari, M.M. CuWO4 as a Novel Z-Scheme Partner to Construct TiO2 Based Stable and Efficient Heterojunction for Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energy 2022, 47, 40391–40406. [Google Scholar] [CrossRef]
- Bao, X.; Wang, X.; Li, X.; Qin, L.; Han, S.; Kang, S.Z. CuWO4-x Nanoparticles Incorporated Brookite TiO2 Porous Nanospheres: Preparation and Dramatic Photocatalytic Activity for Light Driven H2 Generation. Mater. Res. Bull. 2021, 136, 111171. [Google Scholar] [CrossRef]
- Li, T.; Jin, Z. Rationally Engineered Avtive Sites for Efficient and Durable Hydrogen Production over γ-Graphyne Assembly CuMoO4 S-Scheme Heterojunction. J. Catal. 2023, 417, 274–285. [Google Scholar] [CrossRef]
- Lemoine, P.; Guélou, G.; Raveau, B.; Guilmeau, E. Crystal Structure Classification of Copper-Based Sulfides as a Tool for the Design of Inorganic Functional Materials. Angew. Chem. Int. Ed. 2022, 61, e202108686. [Google Scholar] [CrossRef]
- Sarilmaz, A.; Yanalak, G.; Aslan, E.; Ozel, F.; Patir, I.H.; Ersoz, M. Shape-Controlled Synthesis of Copper Based Multinary Sulfide Catalysts for Enhanced Photocatalytic Hydrogen Evolution. Renew. Energy 2021, 164, 254–259. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Ranjith Kumar, D.; Huh, Y.S.; Han, Y.-K.; Uyar, T.; Rajendra Kumar, R.T. Promotional Effect of Cu2S–ZnS Nanograins as a Shell Layer on ZnO Nanorod Arrays for Boosting Visible Light Photocatalytic H2 Evolution. J. Phys. Chem. C 2020, 124, 3610–3620. [Google Scholar] [CrossRef]
- Wang, G.; Quan, Y.; Yang, K.; Jin, Z. EDA-Assisted Synthesis of Multifunctional Snowflake-Cu2S/CdZnS S-Scheme Heterojunction for Improved the Photocatalytic Hydrogen Evolution. J. Mater. Sci. Technol. 2022, 121, 28–39. [Google Scholar] [CrossRef]
- Shi, J.; Li, S.; Wang, F.; Gao, L.; Li, Y.; Zhang, X.; Lu, J. In Situ Topotactic Formation of 2D/2D Direct Z-Scheme Cu2S/Zn0.67 Cd0.33S in-Plane Intergrowth Nanosheet Heterojunctions for Enhanced Photocatalytic Hydrogen Production. Dalt. Trans. 2019, 48, 3327–3337. [Google Scholar] [CrossRef] [PubMed]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and Applications of Copper Sulfide (CuS) Nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Mandari, K.K.; Son, N.; Kang, M. CuS/Ag2O Nanoparticles on Ultrathin g-C3N4 Nanosheets to Achieve High Performance Solar Hydrogen Evolution. J. Colloid Interface Sci. 2022, 615, 740–751. [Google Scholar] [CrossRef]
- Liang, H.; Mei, J.; Sun, H.; Cao, L. Enhanced Photocatalytic Hydrogen Evolution of CdS@CuS Core-Shell Nanorods under Visible Light. Mater. Mater. Sci. Semicond. Process. 2023, 153, 107105. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Li, F.; Liu, Z.; Xu, S. Construction S-Scheme of 2D Nanosheets/1D Nanorod Heterojunction with Compact Interface Contact by Electrostatic Self-Assembly for Efficient Photocatalytic Hydrogen Evolution. Catal. Lett. 2023. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, Z.Y.; Duan, Z.G. Interfacial Properties of Cu7S4/MnS Heterostructure from First-Principles Calculations. J. Phys. Chem. Solids 2019, 134, 141–148. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, D.; Zhang, N.; Ye, W.; Ju, H.; Shi, L.; Long, R.; Zhu, J.; Xiong, Y. Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation. Angew. Chem. Int. Ed. 2017, 56, 4206–4210. [Google Scholar] [CrossRef]
- Huangfu, Y.; Xie, Z.; Wang, T.; Ding, J.; Chen, Z.; Zhai, Y. Elucidating the Origin of Enhanced Photocatalytic Hydrogen Production on Tuned Cu7S4/CdS Heterostructures. Chem. An Asian J. 2022, 17, 202200645. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.; Song, Y.; Liu, Y.; Wu, D.; Li, J.; Liu, W.; Fu, L.; Shen, Y.; Tian, X. CuInS2-Based Photocatalysts for Photocatalytic Hydrogen Evolution via Water Splitting. Int. J. Hydrogen Energy 2023, 48, 3791–3806. [Google Scholar] [CrossRef]
- Li, X.; Xie, K.; Song, L.; Zhao, M.; Zhang, Z. Enhanced Photocarrier Separation in Hierarchical Graphitic-C3N4-Supported CuInS2 for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 24577–24583. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Li, Y.Y.; Wang, D.; Lin, Y.; Li, Z.; Xie, T. Investigation on the Photocatalytic Hydrogen Evolution Properties of Z-Scheme Au NPs/CuInS2/NCN-CN XComposite Photocatalysts. ACS Sustain. Chem. Eng. 2021, 9, 7286–7297. [Google Scholar] [CrossRef]
- Zhong, Y.; Zi, J.; Wu, F.; Li, Z.; Luan, X.; Gao, F.; Lian, Z. Defect-Mediated Electron Transfer in Pt-CuInS2/CdS Heterostructured Nanocrystals for Enhanced Photocatalytic H2Evolution. ACS Appl. Nano Mater. 2022, 5, 7704–7713. [Google Scholar] [CrossRef]
- Yang, W.; Ma, G.; Fu, Y.; Peng, K.; Yang, H.; Zhan, X.; Yang, W.; Wang, L.; Hou, H. Rationally Designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-Scheme Integrated Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2022, 429, 132381. [Google Scholar] [CrossRef]
- Chen, F.; Liao, J.Y.; Lu, X.; Xu, Y.Z.; Jiang, X.H.; Tian, M. Constructing an S-Scheme Heterojunction of 2D/2D Cd0.5Zn0.5S/CuInS2 Nanosheet with Vacancies for Photocatalytic Hydrogen Generation under Visible Light. Appl. Surf. Sci. 2023, 621, 156721. [Google Scholar] [CrossRef]
- Yoshino, S.; Iwase, A.; Ng, Y.H.; Amal, R.; Kudo, A. Z-Schematic Solar Water Splitting Using Fine Particles of H2-Evolving (CuGa)0.5ZnS2 Photocatalyst Prepared by a Flux Method with Chloride Salts. ACS Appl. Energy Mater. 2020, 3, 5684–5692. [Google Scholar] [CrossRef]
- Kato, T.; Hakari, Y.; Ikeda, S.; Jia, Q.; Iwase, A.; Kudo, A. Utilization of Metal Sulfide Material of (CuGa)1-XZn2XS2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems. J. Phys. Chem. Lett. 2015, 6, 1042–1047. [Google Scholar] [CrossRef]
- Dhileepan, M.D.; Lakhera, S.K.; Neppolian, B. Interface Engineering of 0D–1D Cu2NiSnS4/TiO2(B) p–n Heterojunction Nanowires for Efficient Photocatalytic Hydrogen Evolution. Catal. Today 2023, 2, 114006. [Google Scholar] [CrossRef]
- Sun, K.; Zhao, X.; Zhang, Y.; Wu, D.; Zhou, X.; Xie, F.; Tang, Z.; Wang, X. Enhanced Photocarrier Separation in Novel Z-Scheme Cu2ZnSnS4/Cu2O Heterojunction for Excellent Photocatalyst Hydrogen Generation. Mater. Chem. Phys. 2020, 251, 123172. [Google Scholar] [CrossRef]
- Manna, G.; Bose, R.; Pradhan, N. Semiconducting and Plasmonic Copper Phosphide Platelets. Angew. Chem. Int. Ed. 2013, 52, 6762–6766. [Google Scholar] [CrossRef] [PubMed]
- De Trizio, L.; Gaspari, R.; Bertoni, G.; Kriegel, I.; Moretti, L.; Scotognella, F.; Maserati, L.; Zhang, Y.; Messina, G.C.; Prato, M.; et al. Cu3-XP Nanocrystals as a Material Platform for near-Infrared Plasmonics and Cation Exchange Reactions. Chem. Mater. 2015, 27, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Lv, Y.; Fu, L.; Chen, F.; Su, W.; Li, J.; Zhang, Q.; Zhao, S. Photoluminescence Properties of Cuprous Phosphide Prepared through Phosphating Copper with a Native Oxide Layer. RSC Adv. 2021, 11, 34095–34100. [Google Scholar] [CrossRef] [PubMed]
- Paramanik, L.; Sultana, S.; Parida, K. Energy Band Modulation in CuxP(X = 3,1/2)/PbTiO3 via Heterogeneous Erection Induced Benign Junction Interface for Enhanced Photocatalytic H2 Evolution. Int. J. Hydrogen Energy 2022, 47, 3893–3905. [Google Scholar] [CrossRef]
- Shen, R.; Xie, J.; Lu, X.; Chen, X.; Li, X. Bifunctional Cu3P Decorated G-C3N4 Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H2 Production. ACS Sustain. Chem. Eng. 2018, 6, 4026–4036. [Google Scholar] [CrossRef]
- Ioannidi, A.; Petala, A.; Frontistis, Z. Copper Phosphide Promoted BiVO4 photocatalysts for the Degradation of Sulfamethoxazole in Aqueous Media. J. Environ. Chem. Eng. 2020, 8, 104340. [Google Scholar] [CrossRef]
- Rauf, A.; Ma, M.; Kim, S.; Shah, M.S.A.S.; Chung, C.H.; Park, J.H.; Yoo, P.J. Mediator- and Co-Catalyst-Free Direct Z-Scheme Composites of Bi2WO6-Cu3P for Solar-Water Splitting. Nanoscale 2018, 10, 3026–3036. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Highly Efficient P-Type Cu3P/n-Type g-C3N4 Photocatalyst through Z-Scheme Charge Transfer Route. Appl. Catal. B Environ. 2019, 240, 253–261. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, L.; Wang, L.; Xia, X.; Liu, Y.; Cheng, S.; Yang, C.; Li, S. Boosted Photogenerated Carriers Separation in Z-Scheme Cu3P/ZnIn2S4 Heterojunction Photocatalyst for Highly Efficient H2 Evolution under Visible Light. Int. J. Hydrogen Energy 2020, 45, 14334–14346. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, L.; Liu, X.; Sun, X.; Wang, J.; Du, H. Special Z-Scheme Cu3P/TiO2 Hetero-Junction for Efficient Photocatalytic Hydrogen Evolution from Water. J. Alloys Compd. 2022, 894, 162331. [Google Scholar] [CrossRef]
- Ge, G.; Yuan, S.; Liu, Q.; Yang, D.; Shi, J.; Lan, X.; Xiao, K. Insight into the Function of Noble-Metal Free Cu3P Decorated Zn0.5Cd0.5S for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation– Mechanism for Continuous Increasing Activity. Appl. Surf. Sci. 2022, 597, 153660. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Liu, C.; Sun, Z.; Qiu, M.; Yan, G.; Gao, F. Dual-Z-Scheme Heterojunction for Facilitating Spacial Charge Transport Toward Ultra-Efficient Photocatalytic H2 Production. Sol. RRL 2021, 5, 2100241. [Google Scholar] [CrossRef]
- Wang, K.; Xie, H.; Li, Y.; Wang, G.; Jin, Z. Construction of CoP/Cu3P/Ni2P Double S-Scheme Heterojunctions for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2022, 126, 6947–6959. [Google Scholar] [CrossRef]
- Li, Z.H.; He, J.X.; Lv, X.H.; Chi, L.F.; Egbo, K.O.; Li, M.D.; Tanaka, T.; Guo, Q.X.; Yu, K.M.; Liu, C.P. Optoelectronic Properties and Ultrafast Carrier Dynamics of Copper Iodide Thin Films. Nat. Commun. 2022, 13, 6346. [Google Scholar] [CrossRef]
- Jin, Z.; Li, H.; Li, J. Efficient Photocatalytic Hydrogen Evolution over Graphdiyne Boosted with a Cobalt Sulfide Formed S-Scheme Heterojunction. Chin. J. Catal. 2022, 43, 303–315. [Google Scholar] [CrossRef]
- Jin, Z.; Li, T.; Zhang, L.; Wang, X.; Wang, G.; Hao, X. Construction of a Tandem S-Scheme GDY/CuI/CdS-R Heterostructure Based on Morphology-Regulated Graphdiyne (g-C: NH2n−2) for Enhanced Photocatalytic Hydrogen Evolution. J. Mater. Chem. A 2022, 10, 1976–1991. [Google Scholar] [CrossRef]
- Jin, Z.; Li, X.; Li, T.; Li, Y. Graphdiyne (CnH2n−2)-Based GDY/CuI/MIL-53(Al) S-Scheme Heterojunction for Efficient Hydrogen Evolution. Langmuir 2022, 38, 15632–15641. [Google Scholar] [CrossRef]
- Yan, T.; Liu, H.; Jin, Z. Graphdiyne Based Ternary GD-CuI-NiTiO3 S-Scheme Heterjunction Photocatalyst for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 24896–24906. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Liu, H.; Jin, Z. Hierarchical Co3(PO4)2/CuI/g-CnH2n−2 S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Inorg. Chem. 2021, 60, 19402–19413. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.; Jin, Z. In Situ XPS Proved Graphdiyne (CnH2n−2)-Based CoFe LDH/CuI/GD Double S-Scheme Heterojunction Photocatalyst for Hydrogen Evolution. Sep. Purif. Technol. 2023, 311, 123229. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Jin, Z. In Situ X-Ray Photoelectron Spectroscopy (XPS) Demonstrated Graphdiyne (g-CnH2n−2) Based GDY-CuI/NiV-LDH Double S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Energy Fuels 2023, 37, 5399–5411. [Google Scholar] [CrossRef]
- Wang, G.; Quan, Y.; Hao, X.; Guo, X.; Jin, Z. Strong Redox-Capable Graphdiyne-Based Double S-Scheme Heterojunction 10%GC/Mo for Enhanced Photocatalytic Hydrogen Evolution. J. Environ. Chem. Eng. 2023, 11, 109119. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, Q.; Al-Enizi, A.M.; Nafady, A.; Ma, S. Recent Advances in MOF-Based Photocatalysis: Environmental Remediation under Visible Light. Inorg. Chem. Front. 2020, 7, 300–339. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, G.; Liu, H.; Li, Y.; Jin, Z.; Ma, Q. Regular Octahedron Cu-MOFs Modifies Mn0.05Cd0.95S Nanoparticles to Form a S-Scheme Heterojunction for Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46, 7230–7240. [Google Scholar] [CrossRef]
- Quan, Y.; Wang, G.; Jin, Z. Tactfully Assembled CuMOF/CdS S-Scheme Heterojunction for High-Performance Photocatalytic H2 Evolution under Visible Light. ACS Appl. Energy Mater. 2021, 4, 8550–8562. [Google Scholar] [CrossRef]
- Sun, S.; Hisatomi, T.; Wang, Q.; Chen, S.; Ma, G.; Liu, J.; Nandy, S.; Minegishi, T.; Katayama, M.; Domen, K. Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light. ACS Catal. 2018, 8, 1690–1696. [Google Scholar] [CrossRef]
Photo-Catalytic System | Advantages | Drawbacks | Representation of Mechanism |
---|---|---|---|
Type I | - | Fast recombination | |
Type II | Improve charge separation efficiency | Low oxidation and reduction potential | |
Type III | - | Not synergistic effect between semiconductors | |
Liquid-phase Z-scheme | Higher redox ability than traditional heterojunction | The reaction is performed in liquid phase. Difficult application | |
All-solid-state Z-scheme | Strong redox ability in solid state | High cost of noble metals | |
Direct Z-scheme | Strong redox ability without the use of mediators | The mechanism is controversial | |
S-scheme | Controllable built-in electric field intensity and stable interfacial carrier transport process, Strong redox ability, and clear mechanism. | Mainly n-type semiconductors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, R.; Botella, R.; Fernández-Catalá, J. Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production. Hydrogen 2023, 4, 620-643. https://doi.org/10.3390/hydrogen4030040
Greco R, Botella R, Fernández-Catalá J. Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production. Hydrogen. 2023; 4(3):620-643. https://doi.org/10.3390/hydrogen4030040
Chicago/Turabian StyleGreco, Rossella, Romain Botella, and Javier Fernández-Catalá. 2023. "Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production" Hydrogen 4, no. 3: 620-643. https://doi.org/10.3390/hydrogen4030040