Klina River Water Quality Assessment Based on Diatom Algae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bytyqi, P.; Czikkely, M.; Shala-Abazi, A.; Fetoshi, O.; Ismaili, M.; Hyseni-Spahiu, M.; Ymeri, P.; Kabashi-Kastrati, E.; Millaku, F. Macrophytes as Biological Indicators of Organic Pollution in the Lepenci River Basin in Kosovo. J. Freshw. Ecol. 2020, 35, 105–121. [Google Scholar] [CrossRef]
- Fetoshi, O.; Koto, R.; Sallaku, F.; Çadraku, H.; Rizani, S.; Bytyçi, P.; Nuha, D.; Đurin, B.; Durmishi, B.; Haziri, V.; et al. Assessments of Heavy Metal Contaminants in the Drenica River and Bioremediation by Typha Angustifolia. Hydrology 2024, 11, 140. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Z.; Wei, G.; Zhao, H.; Huang, T. Sources of Water Pollution and Evolution of Water Quality in the Wuwei Basin of Shiyang River, Northwest China. J. Environ. Manag. 2009, 90, 1168–1177. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Nura, A.; Hasalliu, R.; Bytyçi, P.; Durmishi, B.; Haziri, S.S.; Ajazi, F.; Haziri, V. Application of Water Quality Index for Assessment of Surface Water, Dukagjini Region, Kosovo. Ecol. Balk. 2023, 15, 68–76. [Google Scholar]
- Adelodun, B.; Ajibade, F.O.; Ighalo, J.O.; Odey, G.; Ibrahim, R.G.; Kareem, K.Y.; Bakare, H.O.; Tiamiyu, A.O.; Ajibade, T.F.; Abdulkadir, T.S.; et al. Assessment of Socioeconomic Inequality Based on Virus-Contaminated Water Usage in Developing Countries: A Review. Environ. Res. 2021, 192, 110309. [Google Scholar] [CrossRef]
- Ashbolt, N.J. Microbial Contamination of Drinking Water and Disease Outcomes in Developing Regions. Toxicology 2004, 198, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.-P. Water Pollution in Pakistan and Its Impact on Public Health—A Review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef]
- Zehnder, A.J.B.; Yang, H.; Schertenleib, R. Water Issues: The Need for Action at Different Levels. Aquat. Sci. 2003, 65, 1–20. [Google Scholar] [CrossRef]
- Tiwari, A.; Melchor-Martínez, E.M.; Saxena, A.; Kapoor, N.; Singh, K.J.; Saldarriaga-Hernández, S.; Parra-Saldívar, R.; Iqbal, H.M.N. Therapeutic Attributes and Applied Aspects of Biological Macromolecules (Polypeptides, Fucoxanthin, Sterols, Fatty Acids, Polysaccharides, and Polyphenols) from Diatoms—A Review. Int. J. Biol. Macromol. 2021, 171, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Tiwari, A.; Kaushik, R.; Iqbal, H.M.N.; Parra-Saldívar, R. Diatoms Recovery from Wastewater: Overview from an Ecological and Economic Perspective. J. Water Process Eng. 2021, 39, 101705. [Google Scholar] [CrossRef] [PubMed]
- Bytyçi, P.; Ymeri, P.; Czikkely, M.; Fetoshi, O.; Shala-Abazi, A.; Ismaili, M.; Ramshaj, Q.; Millaku, F. The Application of Benthic Diatoms in Water Quality Assessment in Lepenci River Basin, Kosovo. J. Ecol. Eng. 2019, 20, 43–57. [Google Scholar] [CrossRef]
- Çelekli, A.; Lekesiz, H.; Yavuzatmaca, M. Bioassessment of Water Quality of Surface Waters Using Diatom Metrics. Turk. J. Bot. 2021, 45, 379–396. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Q.; Burford, M.A.; Sheldon, F.; Bunn, S.E. Benthic Diatom Based Indices for Water Quality Assessment in Two Subtropical Streams. Front. Microbiol. 2017, 8, 204645. [Google Scholar] [CrossRef] [PubMed]
- Directive—2000/60—EN—Water Framework Directive—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 30 July 2024).
- Çelekli, A.; Kapı, E. Ecoregion Approach in the Assessment of Aquatic Ecosystems in the West of Gaziantep (Turkey): Application of Diatom Metrics. Ecol. Indic. 2019, 103, 373–382. [Google Scholar] [CrossRef]
- Lobo, E.A.; Heinrich, C.G.; Schuch, M.; Wetzel, C.E.; Ector, L. Diatoms as Bioindicators in Rivers. In River Algae; Springer: Cham, Switzerland, 2016; pp. 245–271. ISBN 978-3-319-31984-1. [Google Scholar]
- Masouras, A.; Karaouzas, I.; Dimitriou, E.; Tsirtsis, G.; Smeti, E. Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water 2021, 13, 478. [Google Scholar] [CrossRef]
- Taurozzi, D.; Cesarini, G.; Scalici, M. Diatoms as Bioindicators for Health Assessments of Ephemeral Freshwater Ecosystems: A Comprehensive Review. Ecol. Indic. 2024, 166, 112309. [Google Scholar] [CrossRef]
- Charles, D.F.; Kelly, M.G.; Stevenson, R.J.; Poikane, S.; Theroux, S.; Zgrundo, A.; Cantonati, M. Benthic Algae Assessments in the EU and the US: Striving for Consistency in the Face of Great Ecological Diversity. Ecol. Indic. 2021, 121, 107082. [Google Scholar] [CrossRef]
- Fidlerová, D.; Hlúbiková, D. Relationships between Benthic Diatom Assemblages’ Structure and Selected Environmental Parameters in Slovak Water Reservoirs (Slovakia, Europe). Knowl. Manag. Aquat. Ecosyst. 2016, 27, 417. [Google Scholar] [CrossRef]
- Jasprica, N.; Hafner, D. Taxonomic Composition and Seasonality of Diatoms in Three Dinaric Karstic Lakes in Croatia. Limnologica 2005, 35, 304–319. [Google Scholar] [CrossRef]
- Poikane, S.; Kelly, M.; Cantonati, M. Benthic Algal Assessment of Ecological Status in European Lakes and Rivers: Challenges and Opportunities. Sci. Total Environ. 2016, 568, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Zelnik, I.; Balanč, T.; Toman, M.J. Diversity and Structure of the Tychoplankton Diatom Community in the Limnocrene Spring Zelenci (Slovenia) in Relation to Environmental Factors. Water 2018, 10, 361. [Google Scholar] [CrossRef]
- Springe, G.; Sandin, L.; Briede, A.; Skuja, A. Biological Quality Metrics: Their Variability and Appropriate Scale for Assessing Streams. In The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods; Springer: Dordrecht, The Netherlands, 2006; pp. 153–172. ISBN 978-1-4020-5493-8. [Google Scholar]
- Wu, N.; Thodsen, H.; Andersen, H.E.; Tornbjerg, H.; Baattrup-Pedersen, A.; Riis, T. Flow Regimes Filter Species Traits of Benthic Diatom Communities and Modify the Functional Features of Lowland Streams—A Nationwide Scale Study. Sci. Total Environ. 2019, 651, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Buçinca, A.; Bilalli, A.; Ibrahimi, H.; Slavevska-Stamenković, V.; Mitić-Kopanja, D.; Hinić, J.; Grapci-Kotori, L. Water Quality Assessment in the Ibër River Basin (Kosovo) Using Macroinvertebrate and Benthic Diatom Indices. J. Ecol. Eng. 2024, 25, 63–72. [Google Scholar] [CrossRef]
- Bytyçi, P.; Shala-Abazi, A.; Zhushi-Etemi, F.; Bonifazi, G.; Hyseni-Spahiu, M.; Fetoshi, O.; Çadraku, H.; Feka, F.; Millaku, F. The Macrophyte Indices for Rivers to Assess the Ecological Conditions in the Klina River in the Republic of Kosovo. Plants 2022, 11, 1469. [Google Scholar] [CrossRef] [PubMed]
- Etemi, F.Z.; Bytyçi, P.; Ismaili, M.; Fetoshi, O.; Ymeri, P.; Shala–Abazi, A.; Muja-Bajraktari, N.; Czikkely, M. The Use of Macroinvertebrate Based Biotic Indices and Diversity Indices to Evaluate the Water Quality of Lepenci River Basin in Kosovo. J. Environ. Sci. Health Part A 2020, 55, 748–758. [Google Scholar] [CrossRef]
- Grapci-Kotori, L.; Ibrahimi, B.; Bilalli, A.; Ibrahimi, H.; Musliu, M. The Composition, Distribution and Abundance of Fish Species According to the Effects of Water Physicochemical Parameters in the Livoq Lake, Kosovo. J. Ecol. Eng. 2019, 20, 235–241. [Google Scholar] [CrossRef]
- Grapci-Kotori, L.; Vavalidis, T.; Zogaris, D.; Šanda, R.; Vukić, J.; Geci, D.; Ibrahimi, H.; Bilalli, A.; Zogaris, S. Fish Distribution Patterns in the White Drin (Drini i Bardhë) River, Kosovo. Knowl. Manag. Aquat. Ecosyst. 2020, 29, 421. [Google Scholar] [CrossRef]
- Ibrahimi, H.; Kučinić, M.; Gashi, A.; Grapci Kotori, L. The Caddisfly Fauna (Insecta, Trichoptera) of the Rivers of the Black Sea Basin in Kosovo with Distributional Data for Some Rare Species. ZooKeys 2012, 182, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Ibrahimi, H.; Kučinić, M.; Gashi, A.; Grapci-Kotori, L. Trichoptera Biodiversity of the Aegean and Adriatic Sea Basins in the Republic of Kosovo. J. Insect Sci. 2014, 14, 209. [Google Scholar] [CrossRef]
- Kashtanjeva, A.; Vehapi, I.; Kurteshi, K.; Paçarizi, M.; Berisha, A.; Morina, R. Assessment of Physico-Chemical, Microbiological Parameters and Diatom Algae of Badovc Lake, Kosovo. Pol. J. Environ. Stud. 2023, 32, 2155–2169. [Google Scholar] [CrossRef]
- Bytyçi, P.S.; Zhushi Etemi, F.N.; Ismaili, M.A.; Shala, S.A.; Serbinovski, M.S.; Çadraku, H.S.; Fetoshi, O.B. Biomonitoring of Water Quality of River Nerodime Based on Physicochemical Parameters and Macroinvertebrates. Rasayan J. Chem. 2018, 11, 554–568. [Google Scholar] [CrossRef]
- Zhushi Etemi, F.; Çadraku, H.; Bytyçi, A.; Kuçi, T.; Desku, A.; Ymeri, P.; Bytyçi, P. Correlation between Physical and Chemical Parameters of Water and Biotic Indices: The Case Study the White Drin River Basin, Kosovo. J. Water Land Dev. 2020, 46, 229–241. [Google Scholar] [CrossRef]
- Asllani, F.H.; Schürz, M.; Bresgen, N.; Eckl, P.M.; Alija, A.J. Genotoxicity Risk Assessment in Fish (Rutilus rutilus) from Two Contaminated Rivers in the Kosovo. Sci. Total Environ. 2019, 676, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zogaris, S.; Grapci-Kotori, L.; Geci, D.; Ibrahimi, H.; Zogaris, D.; Bilalli, A.; Buçinca, A.; Vlachopoulos, K.; Vavalidis, T. River Degradation Impacts Fish Assemblages in Kosovo’s Ibër Basin. Ecol. Montenegrina 2024, 75, 33–51. [Google Scholar] [CrossRef]
- Çadraku, H.; Hasa, X. Morphometric Analysis of Klina River Basin Using Geospatial Technology and Open Access Datasets. J. Water Land Dev. 2023, 58, 31–41. [Google Scholar] [CrossRef]
- MESPI and KEPA (10.10.2024) Report: The State of Water in Kosovo 2020. Ministry of Environment, Spatial Planning and Infrastructure, Kosovo Environmental Protection Agency: Pristina. Available online: https://ammk-rks.net/assets/cms/uploads/files/dokumente/ANGLISHT_WEB_uji.pdf (accessed on 18 April 2022).
- The Independent Commission for Mines and Minerals. Geological Map of Kosovo (1:200,000). 2006. Available online: https://www.kosovo-mining.org/gdk/login (accessed on 10 May 2022).
- Instituti Hidrometeorologjik i Kosovës. Të Dhënat Meteorologjike, Mesatare Mujore 2001–2019 [Hydrometeorological Yearbook of Kosovo, 2001–2019]. 2022. Available online: https://ihmk-rks.net/?page=1,89,14 (accessed on 19 November 2024).
- EN 13946:2003; Water Quality—Guidance Standard for the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers. ECS (European Committee for Standardization): Brussels, Belgium, 2003.
- Afanasyev, S.; Lyashenko, A. Development of Standard Procedures for Ecological Monitoring of Danube River Basin Water Bodies in Ukraine. Available online: https://www.researchgate.net/publication/238071399_Development_of_standard_procedures_for_ecological_monitoring_of_Danube_River_Basin_water_bodies_in_Ukraine (accessed on 19 November 2024).
- Janauer, G.; Dokulil, M. Macrophytes and Algae in Running Waters. In Biological Monitoring of Rivers: Applications and Perspectives; Ziglio, G., Siligardi, M., Flaim, G., Eds.; Wiley Online Library: Hudson County, NJ, USA, 2006. [Google Scholar]
- Manual for Biological Monitoring of Rivers and Lakes/Reservoirs in B&H | PDF | Aquatic Ecosystem | Water. Available online: https://www.scribd.com/document/106794091/Bio-Manual (accessed on 19 November 2024).
- Cantonati, M.; Kelly, M.G.; Lange-Bertalot, H. Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment English Edition with Updated Taxonomy and Added Species; Koeltz Botanical Books: Oberreifenberg, Germany, 2017; ISBN 978-3-946583-06-6. [Google Scholar]
- Lange-Bertalot, H. Navicula Sensu Stricto, 10 Genera Separated from Navicula Sensu Lato, Frustulia. In Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats; Koeltz Botanical Books: Oberreifenberg, Germany, 2001; Volume 2. [Google Scholar]
- Krammer, K. Cymbella. In Diatoms of Europe; A.R.G. Gantner Verlag K.G: Ruggell, Liechtenstein, 2002. [Google Scholar]
- Lange-Bertalot, H. Diatomeen Im Süßwasser-Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen Für Die Ökologische Praxis: Über 700 Der Häufigsten Arten Und Ihre Ökologie; 2. Korrigierte Aufl.; Koeltz Scientific Books: Königstein, Germany, 2013. [Google Scholar]
- Lecointe, C.; Coste, M.; Prygiel, J. “Omnidia”: Software for Taxonomy, Calculation of Diatom Indices and Inventories Management. Hydrobiologia 1993, 269, 509–513. [Google Scholar] [CrossRef]
- Lenoir, A.; Coste, M. Development of a Practical Diatom Index of Overall Water Quality Applicable to the French National Water Board Network. In Use of Algae for Monitoring Rivers II; Universität Innsbruck: Innsbruck, Austria, 1996; pp. 29–45. [Google Scholar]
- Blanco, S. What Do Diatom Indices Indicate? Modeling the Specific Pollution Sensitivity Index. Environ. Sci. Pollut. Res. 2024, 31, 29449–29459. [Google Scholar] [CrossRef] [PubMed]
- Cemagref. Etude des Methodes Biologiques Quantitatives d’Appreciation de la Qualite des Eaux; Agence de l’eau Rhône Méditerranée Corse: Lyon, France, 1982; p. 28. [Google Scholar]
- Coste, M.; Ayphassorho, H. Etude de La Qualité Des Eaux Du Bassin Artois-Picardie à l’aide Des Communautés de Diatomées Benthiques: Application Des Indices Diatomiques; CEMAGREF: Douai, France, 1991. [Google Scholar]
- Descy, J.P. A New Approach to Water Quality Estimation Using Diatoms. Nova Hedwig. Beih. 1979, 64, 305–323. [Google Scholar]
- Sládeček, V. Diatoms as Indicators of Organic Pollution. Acta Hydrochim. Hydrobiol. 1986, 14, 555–566. [Google Scholar] [CrossRef]
- Prygiel, J.; Coste, M. Progress in the Use of Diatoms for Monitoring Rivers in France. In Use of Algae for Monitoring Rivers III; Agence de l’eau Artois-Picardie: Douai, France, 1999; p. 165. [Google Scholar]
- Dell’uomo, A. Assessment of Water Quality of an Apennine River as a Pilot Study for Diatom-Based Monitoring of Italian Watercourses. In Use of Algae for Monitoring Rivers II; Universität Innsbruck: Innsbruck, Austria, 1996. [Google Scholar]
- Descy, J.-P.; Coste, M. A Test of Methods for Assessing Water Quality Based on Diatoms. SIL Proc. 1922–2010 1991, 24, 2112–2116. [Google Scholar] [CrossRef]
- Watanabe, T.; Asai, K.; Houki, A. Numerical Estimation to Organic Pollution of Flowing Water by Using the Epilithic Diatom Assemblage Diatom Assemblage Index (DAIpo). Sci. Total Environ. 1986, 55, 209–218. [Google Scholar] [CrossRef]
- Kelly, M.G.; Whitton, B.A. The Trophic Diatom Index: A New Index for Monitoring Eutrophication in Rivers. J. Appl. Phycol. 1995, 7, 433–444. [Google Scholar] [CrossRef]
- Gómez, N.; Licursi, M. The Pampean Diatom Index (IDP) for Assessment of Rivers and Streams in Argentina. Aquat. Ecol. 2001, 35, 173–181. [Google Scholar] [CrossRef]
- Schneider, S.C.; Kahlert, M.; Kelly, M.G. Interactions between pH and Nutrients on Benthic Algae in Streams and Consequences for Ecological Status Assessment and Species Richness Patterns. Sci. Total Environ. 2013, 444, 73–84. [Google Scholar] [CrossRef] [PubMed]
- ISO 5667-6:2014; Water Quality—Sampling—Part 6: Guidance on Sampling of Rivers and Streams. ISO: Geneva, Switzerland, 2014. Available online: https://webstore.ansi.org/standards/iso/iso56672014?gad_source=1&gclid=Cj0KCQiAi_G5BhDXARIsAN5SX7q6TMQbVsE0FWH-lbyITsvwrNHbqQFKrmU4YgpV2zcEOG7InxMLy80aAqf1EALw_wcB (accessed on 19 November 2024).
- Bilotta, G.S.; Brazier, R.E. Understanding the Influence of Suspended Solids on Water Quality and Aquatic Biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- The Council of the European Communities. Council Directive 75/440/EEC of 16 June 1975 Concerning the Quality Required of Surface Water Intended for the Abstraction of Drinking Water in the Member States. Off. J. Eur. Communities 1975, 194, 26–31. [Google Scholar]
- Lloyd, D.S. Turbidity as a Water Quality Standard for Salmonid Habitats in Alaska. N. Am. J. Fish. Manag. 1987, 7, 34–45. [Google Scholar] [CrossRef]
- Bratli, J.L. Classification of the Environmental Quality of Freshwater in Norway. In Water Quality Measurements Series; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000; pp. 331–343. ISBN 978-0-470-51112-1. [Google Scholar]
- Musliu, M.; Bilalli, A.; Durmishi, B.; Isamili, M.; Ibrahimi, H. Water Quality Assessment of the Morava e Binçës River Based on the Physicochemical Parameters and Water Quality Index. J. Ecol. Eng. 2018, 19, 104–112. [Google Scholar] [CrossRef]
- Shala, A.; Sallaku, F.; Shala, A.; Ukaj, S. The Effects of Industrial and Agricultural Activity on the Water Quality of the Sitnica River (Kosovo). Geoadria 2014, 20, 13–21. [Google Scholar] [CrossRef]
- Galinha, C.F.; Sanches, S.; Crespo, J.G. Chapter 6—Membrane Bioreactors. In Fundamental Modelling of Membrane Systems; Luis, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 209–249. ISBN 978-0-12-813483-2. [Google Scholar]
- Shehu, I. Water and Sediment Quality Status of the Toplluha River in Kosovo. J. Ecol. Eng. 2019, 20, 266–275. [Google Scholar] [CrossRef]
- Ngatia, L.; Taylor, R. Phosphorus Eutrophication and Mitigation Strategies. In Phosphorus—Recovery and Recycling; Zhang, T., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-83881-021-4. [Google Scholar]
- Yang, X.; Wu, X.; Hao, H.; He, Z. Mechanisms and Assessment of Water Eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Badamasi, H.; Yaro, M.N.; Ibrahim, A.; Bashir, I.A. Impacts of Phosphates on Water Quality and Aquatic Life. Chem. Res. J. 2019, 4, 124–133. [Google Scholar]
- Heikal, G.; El Shahawy, A. Biosorption of Phosphorus, Total Suspended and Dissolved Solids by Dried Phragmites Australis: Isotherm, Kinetic and Interactive Response Surface Methodology (IRSM) in Oil and Soap-Derivatives Industrial Wastewater. Desalination Water Treat. 2019, 137, 243–259. [Google Scholar] [CrossRef]
- Uusitalo, R.; Yli-Halla, M.; Turtola, E. Suspended Soil as a Source of Potentially Bioavailable Phosphorus in Surface Runoff Waters from Clay Soils. Water Res. 2000, 34, 2477–2482. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Lv, X.; Xu, X.; Weng, Q.; Lei, K. Exploration of the Factors That Influence Total Phosphorus in Surface Water and an Evaluation of Surface Water Vulnerability Based on an Advanced Algorithm and Traditional Index Method. J. Environ. Manag. 2023, 342, 118155. [Google Scholar] [CrossRef] [PubMed]
- Akinnawo, S.O. Eutrophication: Causes, Consequences, Physical, Chemical and Biological Techniques for Mitigation Strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Damseth, S.; Thakur, K.; Kumar, R.; Kumar, S.; Mahajan, D.; Kumari, H.; Sharma, D.; Sharma, A.K. Assessing the Impacts of River Bed Mining on Aquatic Ecosystems: A Critical Review of Effects on Water Quality and Biodiversity. HydroResearch 2024, 7, 122–130. [Google Scholar] [CrossRef]
- Fernández, F.G.A.; Fernández-Sevilla, J.M.; Moya, B.L.; Grima, E.M. Chapter 6—Microalgae Production Systems. In Handbook of Microalgae-Based Processes and Products; Jacob-Lopes, E., Maroneze, M.M., Queiroz, M.I., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 127–163. ISBN 978-0-12-818536-0. [Google Scholar]
- Vigiak, O.; Grizzetti, B.; Udias-Moinelo, A.; Zanni, M.; Dorati, C.; Bouraoui, F.; Pistocchi, A. Predicting Biochemical Oxygen Demand in European Freshwater Bodies. Sci. Total Environ. 2019, 666, 1089–1105. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Liu, S.; Li, K.; Jiang, H.; Jiang, T.; Tang, G. Modeling Spatial Patterns of Dissolved Oxygen and the Impact Mechanisms in a Cascade River. Front. Environ. Sci. 2021, 9, 781646. [Google Scholar] [CrossRef]
- Eloranta, P.; Soininen, J. Ecological Status of Some Finnish Rivers Evaluated Using Benthic Diatom Communities. J. Appl. Phycol. 2002, 14, 1–7. [Google Scholar] [CrossRef]
- Qu, W.; Suo, L.; Liu, R.; Liu, M.; Zhao, Y.; Xia, L.; Fan, Y.; Zhang, Q.; Gao, Z. Influence of Temperature on Denitrification and Microbial Community Structure and Diversity: A Laboratory Study on Nitrate Removal from Groundwater. Water 2022, 14, 436. [Google Scholar] [CrossRef]
- Thomas, E.W.; Kociolek, J.P.; Karthick, B. Four New Rhoicosphenia Species from Fossil Deposits in India and North America. Diatom Res. 2015, 30, 35–54. [Google Scholar] [CrossRef]
- Noga, T.; Stanek-Tarkowska, J.; Peszek, Ł.; Pajączek, A.; Kowalska, S. Use of Diatoms to Asses Water Quality of Anthropogenically Modified Matysówka Stream. J. Ecol. Eng. 2013, 14, 1–11. [Google Scholar] [CrossRef]
- Kurteshi, K.; Vehapi, I.; Letaj, K.; Amiti, S.; Ismajli, M.; Haziri, A.; Salihu, D. Saprobiological Analysis of Llap Water (Kosovo). Ann. Ser. Hist. Nat. 2009, 19, 57–62. [Google Scholar]
- Kurteshi, K.; Vehapi, I.; Ismaili, M.; Vllasaku, I. Algological Investigation in River Nerodime During the Summer Season 2011. New Knowl. J. Sci. 2013, 2, 63–67. [Google Scholar]
- Kurteshi, K.; Vehapi, I.; Vllasaku, I. Determination of Pollution in River Drini Bardhë During the Summer Season 2010 Through the Algal Bioindicators. New Knowl. J. Sci. 2013, 2, 56–60. [Google Scholar]
- Ramshaj, Q.; Kurteshi, K.; Ramadani, I. Algological Analysis of River Krena (Gjakova, Kosovo) during Spring Season 2015. J. Mt. Agric. Balk. 2017, 20, 379–385. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20183199930 (accessed on 19 November 2024).
- Salca, A.; Kupe, L.; Miho, A. Data on Diatoms (Bacillariophyceae) and the Biological Quality of Rivers (Osumi, Devolli and Semani) in Berati Area (South-Central Albania). J. Nat. Tech. Sci. 2023, XXVIII, 69–98. [Google Scholar]
- Kupe, L.; Alikaj, M.; Bahiti, E.; Imeri, A.; Duka, I. The Development of Epiphytic Diatoms in the Vjosa River and Their Impact on Water Quality Based on the IPS Index. Int. J. Innov. Technol. Interdiscip. Sci. 2023, 6, 1186–1192. [Google Scholar] [CrossRef]
- Alikaj, M.; Brahushi, F. Ecological Status Assessment Using Diatom Indices of Water Ecosystems in Gjirokastra District, Albania. Fresenius Environ. Bull. 2019, 28, 899–904. [Google Scholar]
- Cvetkoska, A.; Pavlov, A.; Jovanovska, E.; Tofilovska, S.; Blanco, S.; Ector, L.; Wagner-Cremer, F.; Levkov, Z. Spatial Patterns of Diatom Diversity and Community Structure in Ancient Lake Ohrid. Hydrobiologia 2018, 819, 197–215. [Google Scholar] [CrossRef]
- Levkov, Z.; Krstic, S.; Nakov, T.; Melovski, L. Diatom Assemblages on Shara and Nidze Mountains, Macedonia. Nova Hedwig. 2005, 81, 501–538. [Google Scholar] [CrossRef]
- Zhang, X.; Reed, J.; Wagner, B.; Francke, A.; Levkov, Z. Lateglacial and Holocene Climate and Environmental Change in the Northeastern Mediterranean Region: Diatom Evidence from Lake Dojran (Republic of Macedonia/Greece). Quat. Sci. Rev. 2014, 103, 51–66. [Google Scholar] [CrossRef]
- Meron, E. Pattern Formation—A Missing Link in the Study of Ecosystem Response to Environmental Changes. Math. Biosci. 2016, 271, 1–18. [Google Scholar] [CrossRef]
- Meron, E. Pattern-Formation Approach to Modelling Spatially Extended Ecosystems. Ecol. Model. 2012, 234, 70–82. [Google Scholar] [CrossRef]
- Correia, A.M.; Lopes, L.F. Revisiting Biodiversity and Ecosystem Functioning through the Lens of Complex Adaptive Systems. Diversity 2023, 15, 895. [Google Scholar] [CrossRef]
- Xue, H.; Wang, L.; Zhang, L.; Wang, Y.; Meng, F.; Xu, M. Exploration of Applicability of Diatom Indices to Evaluate Water Ecosystem Quality in Tangwang River in Northeast China. Water 2023, 15, 3695. [Google Scholar] [CrossRef]
- Millar, G.J.; Couperthwaite, S.J.; Moodliar, C.D. Strategies for the Management and Treatment of Coal Seam Gas Associated Water. Renew. Sustain. Energy Rev. 2016, 57, 669–691. [Google Scholar] [CrossRef]
- Shammaa, Y.; Zhu, D.Z. Techniques for Controlling Total Suspended Solids in Stormwater Runoff. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2001, 26, 359–375. [Google Scholar] [CrossRef]
- Solak, C.N.; Peszek, Ł.; Yilmaz, E.; Ergül, H.A.; Kayal, M.; Ekmekçi, F.; Várbíró, G.; Yüce, A.M.; Canli, O.; Binici, M.S.; et al. Use of Diatoms in Monitoring the Sakarya River Basin, Turkey. Water 2020, 12, 703. [Google Scholar] [CrossRef]
- Maslennikova, A.V.; Gulakov, V.O. Application of European Diatom Indices for Paleolimnological Reconstructions of Lake Tavatui (Middle Urals, Russia) Ecosystem Changes. Limnol. Freshw. Biol. 2022, 1492–1494. [Google Scholar] [CrossRef]
- Poulíčková, A.; Duchoslav, M.; Dokulil, M. Littoral Diatom Assemblages as Bioindicators of Lake Trophic Status: A Case Study from Perialpine Lakes in Austria. Eur. J. Phycol. 2004, 39, 143–152. [Google Scholar] [CrossRef]
- Bhagowati, B.; Ahamad, K.U. A Review on Lake Eutrophication Dynamics and Recent Developments in Lake Modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Xie, E.; Su, Y.; Deng, S.; Kontopyrgou, M.; Zhang, D. Significant Influence of Phosphorus Resources on the Growth and Alkaline Phosphatase Activities of Microcystis aeruginosa. Environ. Pollut. 2021, 268, 115807. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Ramos, M.; Rimet, F.; Bécares, E.; Blanco, S. Environmental Drivers of Genetic Variability in Common Diatom Genera: Implications for Shallow Lake Biomonitoring. Ecol. Indic. 2023, 154, 110898. [Google Scholar] [CrossRef]
Sampling Stations | Latitude (N) Longitude(E) Altitude (m a.s.l.) | Hydro Morphology | |
---|---|---|---|
L1 | Kuçicë | 42°37′8″ N 20°53′49″ E 1200 | Natural habitat: mountainous source area with a flow velocity exceeding 2.5 m per second. |
L2 | Tushilë | 44°42′43″ N 20°45′39″ E 561 | The river is influenced by various agricultural and industrial activities, with no impact on the riverbed and a slow flow velocity of over 1 m per second. |
L3 | Klinë | 42°61′52.56″ N 20°57′57.35″ E 381 | The riverbed is concreted on all sides and is affected by urban waters, industrial discharges, and agricultural activities. Its flow velocity is 1.5 m per second. |
Index | References | Stressor Type Sensibility |
---|---|---|
IBD (Biological diatom index) | [53] | General pollution |
IPS (Index of Pollution Sensitivity) | [54,55] | Pollution sensitivity index |
IDG (Generic diatom index) | [56] | General pollution |
Descy (Descy’s pollution metric) | [52] | General pollution |
SLA (Sladeček’s pollution metric) | [57,58] | Saprobity (BOD) |
IDAP (Indece Diatomique Artois Picardie) | [59] | General pollution |
EPI-D (Eutrophication pollution index) | [60] | Pollution-Trophic status |
CEE (European index) | [61] | General pollution |
WAT (Watanabe’s Index) | [62] | Saprobity (BOD) |
TDI (Trophic diatom index) | [63] | Trophic status |
IDP (Pampean diatom index) | [64] | Organic pollution/eutrophication |
SHE (Steinberg and Schiefele’s index) | [63,65] | Pollution-Trophic status |
Water Quality Classes | Ecological Status | IBD, IPS, IDG, DESCY, SLA, IPI-D, CEE, WAT, TDI, IDP, SHE | Trophic Status |
---|---|---|---|
I | High | 17–20 | oligotrophic |
II | Good | 13–16 | oligo-mesotrophic |
III | Average | 9–12 | mesotrophic |
IV | Poor | 5–8 | eutrophic |
V | Bad | 1–4 | hypertrophic |
T°C | TSS | pH | DO | BOD | COD | PT | NO2− | |
---|---|---|---|---|---|---|---|---|
T°C | 1 | |||||||
TSS | 0.078777 | 1 | ||||||
pH | −0.79274 | −0.67011 | 1 | |||||
DO | −0.62337 | −0.8286 | 0.970802 | 1 | ||||
BOD | 0.647726 | 0.810532 | −0.97789 | −0.9995 | 1 | |||
COD | 0.590269 | 0.851198 | −0.95997 | −0.99913 | 0.997322 | 1 | ||
PT | 0.72211 | 0.746514 | −0.99413 | −0.99106 | 0.994777 | 0.984647 | 1 | |
NO2− | 0.989065 | 0.224937 | −0.87397 | −0.73187 | 0.753003 | 0.702861 | 0.816237 | 1 |
No. | Code | Abd. | % | Taxon Name |
---|---|---|---|---|
1 | AOVA | 2 | 1.1 | Amphora ovalis (Kützing) Kützing |
2 | AVEN | 1 | 0.5 | Amphora veneta Kützing |
3 | AUDI | 1 | 0.5 | Aulacoseira distans (Ehr.)Simonsen |
4 | CPED | 9 | 4.8 | Cocconeis pediculus Ehrenberg |
5 | CPLA | 6 | 3.2 | Cocconeis placentula Ehrenberg |
6 | CPLE | 5 | 2.7 | Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow |
7 | CPLI | 6 | 3.2 | Cocconeis placentula Ehrenberg var.lineata (Ehr.) Van Heurck |
8 | COPL | 1 | 0.5 | Cocconeis pseudolineata (Geitler) Lange-Bertalot |
9 | DOBL | 1 | 0.5 | Diploneis oblongella (Naegeli) Cleve-Euler |
10 | GDEC | 1 | 0.5 | Geissleria decussis(Ostrup) Lange-Bertalot & Metzeltin |
11 | GCLA | 6 | 3.2 | Gomphonema clavatum Ehr. |
12 | GGRA | 3 | 1.6 | Gomphonema gracile Ehrenberg |
13 | GMIN | 18 | 9.6 | Gomphonema minutum (Ag.) Agardh f. minutum |
14 | GOLI | 1 | 0.5 | Gomphonema olivaceum (Hornemann) Brébisson |
15 | GPUM | 5 | 2.7 | Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot |
16 | GSCL | 5 | 2.7 | Gomphonema subclavatum Grunow |
17 | GYAC | 25 | 13.4 | Gyrosigma acuminatum (Kützing) Rabenhorst |
18 | GYAT | 5 | 2.7 | Gyrosigma attenuatum (Kützing) Rabenhorst |
19 | HARC | 3 | 1.6 | Hannaea arcus (Ehr.) Patrick |
20 | MCIR | 17 | 9.1 | Meridion circulare (Greville) C.A.Agardh |
21 | NERI | 1 | 0.5 | Navicula erifuga Lange-Bertalot in Krammer & Lange-Bertalot |
22 | NHIN | 4 | 2.1 | Navicula hintzii Lange-Bertalot |
23 | NREI | 1 | 0.5 | Navicula reinhardtii (Grunow) Grunow in Cl. & Möller |
24 | NTPT | 1 | 0.5 | Navicula tripunctata (O.F.Müller) Bory |
25 | NVIR | 5 | 2.7 | Navicula viridula (Kützing) Ehrenberg |
26 | NVUL | 1 | 0.5 | Navicula vulpina Kützing |
27 | NEDU | 1 | 0.5 | Neidium dubium (Ehrenberg) Cleve |
28 | NAMP | 1 | 0.5 | Nitzschia amphibia Grunow |
29 | NLIN | 1 | 0.5 | Nitzschia linearis (Agardh) W.M.Smith |
30 | NPAL | 5 | 2.7 | Nitzschia palea (Kützing) W.Smith |
31 | RABB | 44 | 23.5 | Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot |
32 | TFLO | 1 | 0.5 | Tabellaria flocculosa (Roth) Kützing |
No. | Code | Abd. | % | Taxon Name |
---|---|---|---|---|
1 | AAEQ | 6 | 1.8 | Amphora aequalis Krammer |
2 | CEUG | 14 | 4.1 | Cocconeis euglypta Ehrenberg emend Romero & Jahn |
3 | CPLE | 14 | 4.1 | Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow |
4 | COPL | 8 | 2.3 | Cocconeis pseudolineata (Geitler) Lange-Bertalot |
5 | CAMB | 16 | 4.7 | Craticula ambigua (Ehrenberg) Mann |
6 | CCUH | 1 | 0.3 | Craticula cuspidata Kützing var.heribaudii M.Peragallo |
7 | CMEN | 11 | 3.2 | Cyclotella meneghiniana Kützing |
8 | CMIN | 9 | 2.6 | Cymbella minuta Hilse ex Rabenhorst |
9 | CNAV | 6 | 1.8 | Cymbella naviculiformis Auerswald ex Heiberg |
10 | EPRO | 3 | 0.9 | Encyonema prostratum (Berkeley) Kützing |
11 | ENV1 | 4 | 1.2 | Encyonema ventricosum (Agardh) Grunow morphotype 1 in Krammer |
12 | ESBM | 16 | 4.7 | Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin |
13 | GOMP | 16 | 4.7 | GOMPHONEMA C.G. Ehrenberg |
14 | GCLA | 13 | 3.8 | Gomphonema clavatum Ehr. |
15 | GEXL | 1 | 0.3 | Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt |
16 | GGRA | 2 | 0.6 | Gomphonema gracile Ehrenberg |
17 | GITA | 4 | 1.2 | Gomphonema italicum Kützing |
18 | GMIN | 3 | 0.9 | Gomphonema minutum (Ag.) Agardh f. minutum |
19 | GPAR | 20 | 5.8 | Gomphonema parvulum (Kützing) Kützing |
20 | GSCL | 13 | 3.8 | Gomphonema subclavatum Grunow |
21 | MCIR | 12 | 3.5 | Meridion circulare (Greville) C.A.Agardh |
22 | NAMB | 7 | 2.0 | Navicula amabilis Hustedt |
23 | NCTE | 12 | 3.5 | Navicula cryptotenella Lange-Bertalot |
24 | NHIN | 6 | 1.8 | Navicula hintzii Lange-Bertalot |
25 | NRAD | 2 | 0.6 | Navicula radiosa Kützing |
26 | NRCH | 6 | 1.8 | Navicula reichardtiana Lange-Bertalot |
27 | NROS | 6 | 1.8 | Navicula rostellata Kützing |
28 | NDIS | 20 | 5.8 | Nitzschia dissipata (Kützing) Grunow ssp.dissipata |
29 | NLIN | 5 | 1.5 | Nitzschia linearis (Agardh) W.M.Smith |
30 | NPAL | 17 | 5.0 | Nitzschia palea (Kützing) W.Smith |
31 | NPAD | 19 | 5.6 | Nitzschia palea (Kützing) W.Smith var.debilis(Kützing)Grunow in Cleve & Grunow |
32 | NSOC | 7 | 2.0 | Nitzschia sociabilis Hustedt |
33 | RABB | 17 | 5.0 | Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot |
34 | SBRE | 6 | 1.8 | Surirella brebissonii Krammer & Lange-Bertalot |
35 | SULN | 9 | 2.6 | Synedra ulna (Nitzsch.)Ehr. |
36 | TFLO | 2 | 0.6 | Tabellaria flocculosa (Roth) Kützing |
37 | UULN | 9 | 2.6 | Ulnaria ulna (Nitzsch) Compère |
No. | Code | Abd. | % | Taxon Name |
---|---|---|---|---|
1 | ADMI | 17 | 3.5 | Achnanthidium minutissimum (Kützing) Czarnecki |
2 | ADBI | 6 | 1.2 | Achnanthidium biasolettianum (Grunow in Cl. & Grun.) Lange-Bertalot |
3 | AMNU | 2 | 0.4 | Amphora minutissima W. Smith |
4 | APED | 15 | 3.1 | Amphora pediculus (Kützing) Grunow |
5 | AOVA | 33 | 6.8 | Amphora ovalis (Kützing) Kützing |
6 | ALIB | 2 | 0.4 | Amphora libyca Ehr. |
7 | AVEN | 3 | 0.6 | Amphora veneta Kützing |
8 | CPED | 8 | 1.6 | Cocconeis pediculus Ehrenberg |
9 | CPLE | 36 | 7.4 | Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow |
10 | CPLA | 44 | 9.0 | Cocconeis placentula Ehrenberg |
11 | CPLI | 23 | 4.7 | Cocconeis placentula Ehrenberg var.lineata (Ehr.)Van Heurck |
12 | COPL | 13 | 2.7 | Cocconeis pseudolineata (Geitler) Lange-Bertalot |
13 | CLAN | 6 | 1.2 | Cymbella lanceolata (Agardh ?)Agardh |
14 | DMON | 19 | 3.9 | Diatoma moniliformis Kützing ssp.moniliformis (moniliforme?) |
15 | DVUL | 36 | 7.4 | Diatoma vulgaris Bory |
16 | EMNT | 9 | 1.8 | Encyonema minutum (Hilse in Rabh.) D.G. Mann morphotype 2 |
17 | ESLE | 14 | 2.9 | Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann |
18 | EPRO | 1 | 0.2 | Encyonema prostratum (Berkeley) Kützing |
19 | GMIN | 8 | 1.6 | Gomphonema minutum (Ag.) Agardh f. minutum |
20 | GCLA | 19 | 3.9 | Gomphonema clavatum Ehr. |
21 | GSCL | 1 | 0.2 | Gomphonema subclavatum Grunow |
22 | GOLI | 2 | 0.4 | Gomphonema olivaceum (Hornemann) Brébisson |
23 | GPAR | 10 | 2.0 | Gomphonema parvulum (Kützing) Kützing |
24 | GPRB | 9 | 1.8 | Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot var. rigidum Reichardt & Lange-Bertalot f.biseriatum Morales & Vis |
25 | GTEA | 6 | 1.2 | Gomphonema tergestinum Fricke f. anormale |
26 | MAAT | 1 | 0.2 | Mayamaea atomus (Kützing) Lange-Bertalot |
27 | MVAR | 3 | 0.6 | Melosira varians Agardh |
28 | NANT | 11 | 2.3 | Navicula antonii Lange-Bertalot |
29 | NCPR | 13 | 2.7 | Navicula capitatoradiata Germain |
30 | NHIN | 4 | 0.8 | Navicula hintzii Lange-Bertalot |
31 | NCTE | 4 | 0.8 | Navicula cryptotenella Lange-Bertalot |
32 | NGRE | 2 | 0.4 | Navicula gregaria Donkin |
33 | NLLT | 1 | 0.2 | Navicula lanceolata (Agardh) Kützing |
34 | NTPT | 6 | 1.2 | Navicula tripunctata (O.F.Müller) Bory |
35 | NVEN | 5 | 1.0 | Navicula veneta Kützing |
36 | NVMA | 2 | 0.4 | Navicula vulpina Kützing var.mascarenae Coste & Ricard |
37 | NEDU | 1 | 0.2 | Neidium dubium (Ehrenberg)Cleve |
38 | NACI | 2 | 0.4 | Nitzschia acicularis Kützing) W.M.Smith |
39 | NAMP | 1 | 0.2 | Nitzschia amphibia Grunow |
40 | NCPL | 1 | 0.2 | Nitzschia capitellata Hustedt in A.Schmidt & al. |
41 | NDIS | 15 | 3.1 | Nitzschia dissipata (Kützing) Grunow ssp.dissipata |
42 | NFON | 3 | 0.6 | Nitzschia fonticola Grunow in Cleve et Möller |
43 | NRAD | 4 | 0.8 | Navicula radiosa Kützing |
44 | RABB | 33 | 6.8 | Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot |
45 | SNEG | 2 | 0.4 | Surirella neglecta Reichardt |
46 | SLIN | 4 | 0.8 | Surirella linearis W.M.Smith in Schmidt & al. |
47 | UULN | 1 | 0.2 | Ulnaria ulna (Nitzsch) Compère |
48 | LGOE | 1 | 0.2 | Luticola goeppertiana (Bleisch in Rabenhorst) D.G.Mann in Round Crawford & Mann |
49 | LVEN | 1 | 0.2 | Luticola ventricosa (Kützing) D.G. Mann in Round Crawford & Mann |
50 | FCVA | 4 | 0.8 | Fragilaria capucina Desmazieres var.vaucheriae (Kützing) Lange-Bertalot |
51 | FCAP | 7 | 1.4 | Fragilaria capucina Desmazieres |
52 | MCIR | 14 | 2.9 | Meridion circulare (Greville) C.A.Agardh |
No. | Diatom Index | L-1 (Kuçicë) | L-2 (Tushillë) | L-3 (Klinë) |
---|---|---|---|---|
1 | IBD (Biological diatom index) | 15.5 | 12.7 | 15.2 |
2 | IPS (Index of Pollution Sensitivity) | 14.5 | 11.5 | 14.5 |
3 | IDG (Generic diatom index) | 13.4 | 11.3 | 13.7 |
4 | Descy (Descy’s pollution metric) | 17.2 | 13.3 | 16.3 |
5 | SLA (Sladeček’s pollution metric) | 12.6 | 11.9 | 12.3 |
6 | IDAP (Indece Diatomique Artois-Picardie) | 13.5 | 12.1 | 14.5 |
7 | EPI-D (Eutrophication pollution index) | 13.3 | 11.4 | 13.4 |
8 | CEE (European index) | 15.2 | 10.1 | 14.1 |
9 | WAT (Watanabe’s Index) | 16.3 | 10.9 | 15.4 |
10 | TDI (Trophic diatom index) | 8.7 | 7.0 | 9.9 |
11 | IDP (Pampean diatom index) | 11.8 | 10.2 | 12.3 |
12 | SHE (Steinberg and Schiefele’s index) | 13.8 | 12.4 | 13.9 |
Correlations | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IBD | IPS | IDG | Descy | SLA | IDAP | EPI-D | CEE | WAT | TDI | IDP | SHE | |||
Spearman’s rho | T°C | Correlation Coefficient | −0.500 | 0.000 | 0.500 | −0.500 | −0.500 | 0.500 | 0.500 | −0.500 | −0.500 | 0.500 | 0.500 | 0.500 |
Sig. (2-tailed) | 0.667 | 1.000 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | ||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
TSS | Correlation Coefficient | −0.500 | −0.866 | −1.000 ** | −0.500 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −1.000 ** | −1.000 ** | −1.000 ** | |
Sig. (2-tailed) | 0.667 | 0.333 | 0.667 | 0.667 | 0.667 | 0.667 | ||||||||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
pH | Correlation Coefficient | 1.000 ** | 0.866 | 0.500 | 1.000 ** | 1.000 ** | 0.500 | 0.500 | 1.000 ** | 1.000 ** | 0.500 | 0.500 | 0.500 | |
Sig. (2-tailed) | 0.333 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | |||||||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
Dissolved oxygen (DO) | Correlation Coefficient | 1.000 ** | 0.866 | 0.500 | 1.000 ** | 1.000 ** | 0.500 | 0.500 | 1.000 ** | 1.000 ** | 0.500 | 0.500 | 0.500 | |
Sig. (2-tailed) | 0.333 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | |||||||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
BOD | Correlation Coefficient | −1.000 ** | −0.866 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −0.500 | |
Sig. (2-tailed) | 0.333 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | |||||||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
COD | Correlation Coefficient | −1.000 ** | −0.866 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −0.500 | |
Sig. (2-tailed) | 0.333 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | |||||||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
PT | Correlation Coefficient | −1.000 ** | −0.866 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −0.500 | |
Sig. (2-tailed) | 0.333 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | |||||||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
NO2− | Correlation Coefficient | −0.500 | 0.000 | 0.500 | −0.500 | −0.500 | 0.500 | 0.500 | −0.500 | −0.500 | 0.500 | 0.500 | 0.500 | |
Sig. (2-tailed) | 0.667 | 1.000 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | ||
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetoshi, O.; Koto, R.; Shala, A.; Sallaku, F.; Bytyçi, P.; Nuha, D.; Đurin, B.; Hasalliu, R.; Bytyçi, A.; Rathnayake, U.; et al. Klina River Water Quality Assessment Based on Diatom Algae. Ecologies 2025, 6, 15. https://doi.org/10.3390/ecologies6010015
Fetoshi O, Koto R, Shala A, Sallaku F, Bytyçi P, Nuha D, Đurin B, Hasalliu R, Bytyçi A, Rathnayake U, et al. Klina River Water Quality Assessment Based on Diatom Algae. Ecologies. 2025; 6(1):15. https://doi.org/10.3390/ecologies6010015
Chicago/Turabian StyleFetoshi, Osman, Romina Koto, Albona Shala, Fatbardh Sallaku, Pajtim Bytyçi, Demokrat Nuha, Bojan Đurin, Rozeta Hasalliu, Arbëri Bytyçi, Upaka Rathnayake, and et al. 2025. "Klina River Water Quality Assessment Based on Diatom Algae" Ecologies 6, no. 1: 15. https://doi.org/10.3390/ecologies6010015
APA StyleFetoshi, O., Koto, R., Shala, A., Sallaku, F., Bytyçi, P., Nuha, D., Đurin, B., Hasalliu, R., Bytyçi, A., Rathnayake, U., & Dogančić, D. (2025). Klina River Water Quality Assessment Based on Diatom Algae. Ecologies, 6(1), 15. https://doi.org/10.3390/ecologies6010015