Circulation of 137Cs in Various Forest Plants in the Chornobyl Exclusion Zone during the Year
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling of Various Objects of Forest Ecosystems
- -
- in the forest massifs of the Chornobyl exclusion zone, pine forests occupy almost 60% of the total area of 91,565.0 ha [50], and this species is dominant;
- -
- samples of photosynthetic organs of this plant are available throughout the year;
- -
- the capacity to simultaneously sample branches and needles of different ages.
- -
- 15 one-year and 15 two-year branches with needles;
- -
- 10–12 pieces of bark;
- -
- 10–12 wood samples.
2.3. Radiometry
2.4. Correlation Analysis
- n—number of paired ranked signs (sample size);
- D—difference between the ranks of the conjugate values of the features;
- )—sum of the squared differences in ranks [53].
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergan, T.D. Radioactive fallout in Norway from atmospheric nuclear weapons tests. J. Environ. Radioact. 2002, 60, 189–208. [Google Scholar] [CrossRef]
- Gwynn, J.P.; Nalbandyan, A.; Rudolfsen, G. 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J. Environ. Radioact. 2013, 116, 34–41. [Google Scholar] [CrossRef]
- Tracy, B.L.; Carini, F.; Barabash, S.; Berkovskyy, V.; Brittain, J.E.; Chouhan, S.; Eleftheriou, G.; Iosjpe, M.; Monte, L.; Psaltaki, M.; et al. The sensitivity of different environments to radioactive contamination. J. Environ. Radioact. 2013, 122, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Khan, A.M.; Ahmad, M.; Akib, S.; Balkhair, K.S.; Bakar, N.K.A. Release, deposition and elimination of radiocesium (137Cs) in the terrestrial environment. Environ. Geochem. Health 2014, 36, 1165–1190. [Google Scholar] [CrossRef] [PubMed]
- Paller, M.H.; Jannik, G.T.; Baker, R.A. Effective Half-Life of Caesium-137 in Various Environmental Media at the Savannah River Site. J. Environ. Radioact. 2014, 131, 81–88. [Google Scholar] [CrossRef]
- Rosén, K.; Vinichuk, M. Potassium fertilization and 137Cs transfer from soil to grass and barley in Sweden after the Chernobyl fallout. J. Environ. Radioact. 2014, 130, 22–32. [Google Scholar] [CrossRef]
- Penrose, B.; Beresford, N.A.; Broadley, M.R.; Crout, N.M.J. Inter-varietal variation in caesium and strontium uptake by plants: A meta-analysis. J. Environ. Radioact. 2015, 139, 103–117. [Google Scholar] [CrossRef]
- Itthipoonthanakorn, T.; Dann, S.E.; Crout, N.M.J.; Shaw, G. Nuclear weapons fallout 137Cs in temperate and tropical pine forest soils, 50 years post-deposition. Sci. Total Environ. 2019, 660, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Holiaka, D.; Yoschenko, V.; Levchuk, S.; Kashparov, V. Distributions of 137Cs and 90Sr activity concentrations in trunk of Scots pine (Pinus sylvestris L.) in the Chernobyl zone. J. Environ. Radioact. 2020, 222, 106319. [Google Scholar] [CrossRef]
- Oloś, G.; Dołhańczuk-Śródka, A. Effective and environmental half-lives of radiocesium in game from Poland. J. Environ. Radioact. 2022, 248, 106870. [Google Scholar] [CrossRef]
- Hashimoto, S.; Ugawa, S.; Nanko, K.; Shichi, K. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Sci. Rep. 2012, 2, 416. [Google Scholar] [CrossRef] [PubMed]
- Tagami, K.; Uchida, S.; Ishii, N.; Kagiya, S. Translocation of radiocesium from stems and leaves of plants and the effect on radiocesium concentrations in newly emerged plant tissues. J. Environ. Radioact. 2012, 111, 65–69. [Google Scholar] [CrossRef]
- Teramage, M.T.; Onda, Y.; Patin, J.; Kato, H.; Gomi, T.; Nam, S. Vertical distribution of radiocesium in coniferous forest soil after the Fukushima nuclear power plant accident. J. Environ. Radioact. 2014, 137, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Tamura, K.; Suda, T.; Matsumura, R.; Onda, Y. Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015, 139, 351–361. [Google Scholar] [CrossRef]
- Komatsu, M.; Kaneko, S.; Ohashi, S.; Kuroda, K.; Sano, T.; Ikeda, S.; Saito, S.; Kiyono, Y.; Tonosaki, M.; Miura, S.; et al. Characteristics of initial deposition and behavior of radiocesium in forest ecosystems of different locations and species affected by the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact. 2016, 161, 2–10. [Google Scholar] [CrossRef]
- Niizato, T.; Abe, H.; Mitachi, K.; Sasaki, Y.; Ishii, Y.; Watanabe, T. Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO’s Fukushima Dai-ichi nuclear power plant accident. J. Environ. Radioact. 2016, 161, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Nishina, K.; Hashimoto, S. Extensive analysis of radiocesium concentrations in wild mushrooms in eastern Japan affected by the Fukushima nuclear accident: Use of open accessible monitoring data. Environ. Poll. 2019, 255, 113236. [Google Scholar] [CrossRef]
- Kenzo, K.; Saito, S.; Araki, M.G.; Kajimoto, T. Vertical distribution of radiocesium concentrations among crown positions and year-to-year variation in four major tree species after the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact. 2020, 225, 106447. [Google Scholar] [CrossRef]
- Ohashi, S.; Kuroda, K.; Fujiwara, T.; Takano, T. Tracing radioactive cesium in stem wood of three Japanese conifer species 3 years after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Wood Sci. 2020, 66, 44. [Google Scholar] [CrossRef]
- Imamura, N.; Watanabe, M.; Manaka, T. Estimation of the rate of 137Cs root uptake into stemwood of Japanese cedar using an isotopic approach. Sci. Total Environ. 2021, 755, 142478. [Google Scholar] [CrossRef]
- Saidin, Z.H.; Levia, D.F.; Kato, H.; Kurihara, M.; Hudson, J.E.; Nanko, K.; Onda, Y. Vertical distribution and transport of radiocesium via branchflow and stemflow through the canopy of cedar and oak stands in the aftermath of the Fukushima Dai-ichi Nuclear Power Plant accident. Sci. Total Environ. 2022, 818, 151698. [Google Scholar] [CrossRef]
- Ota, M.; Koarashi, J. Contamination processes of tree components in Japanese forest ecosystems affected by the Fukushima Daiichi Nuclear Power Plant accident 137Cs fallout. Sci. Total Environ. 2022, 816, 142478. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, B.; Brennan, M.; Dawson, D.; Dowding, D. Mechanisms of 137Cs migration in coniferous forest soils. J. Environ. Radioact. 2000, 48, 131–143. [Google Scholar] [CrossRef]
- Kruyts, N.; Delvaux, B. Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems. J. Environ. Radioact. 2002, 58, 175–190. [Google Scholar] [CrossRef]
- Kostiainen, E. 137Cs in Finnish wild berries, mushrooms and game meat in 2000–2005. Boreal Environ. Res. 2007, 12, 23–28. [Google Scholar]
- Bataitienė, I.P.; Butkus, D. Investigation of 137Cs and 90Sr transfer from sandy soil to Scots pine (Pinus sylvestris L.) rings. J. Environ. Eng. Landsc. Manag. 2010, 18, 281–287. [Google Scholar] [CrossRef]
- Škrkal, J.; Rulik, P.; Fantinova, K.; Burianova, J.; Helebrant, J. Long-term 137Cs activity monitoring of mushrooms in forest ecosystems of the Czech Republic. Radiat. Protect. Dosim. 2013, 157, 579–584. [Google Scholar] [CrossRef]
- Trappe, M.J.; Minc, L.D.; Kittredge, K.S.; Pinkd, J.W. Cesium radioisotope content of wild edible fungi, mineral soil, and surface litter in western North America after the Fukushima nuclear accident. Canad. J. For. Res. 2014, 44, 1441–1452. [Google Scholar] [CrossRef]
- Marčiulionienė, D.; Lukšienė, B.; Jefanova, O. Accumulation and translocation peculiarities of 137Cs and 40K in the soil-plant system. J. Environ. Radioact. 2015, 150, 86–92. [Google Scholar] [CrossRef]
- Huang, Y.; Kaneko, N.; Nakamori, T.; Miura, T.; Tanaka, Y.; Nonaka, M.; Takenaka, C. Radiocesium immobilization to leaf litter by fungi during first-year decomposition in a deciduous forest in Fukushima. J. Environ. Radioact. 2016, 152, 28–34. [Google Scholar] [CrossRef]
- Thiry, Y.; Garcia-Sanchez, L.; Hurtevent, P. Experimental quantification of radiocesium recycling in a coniferous tree after aerial contamination: Field loss dynamics, translocation and final partitioning. J. Environ. Radioact. 2016, 161, 42–50. [Google Scholar] [CrossRef]
- Tucakovića, I.; Barišića, D.; Graheka, Ž.; Kasap, A.; Širić, I. 137Cs in mushrooms from Croatia sampled 15–30 years after Chernobyl. J. Environ. Radioact. 2018, 181, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Strzałek, M.; Barczak, K.; Karwowska, J.; Królak, E. Activity of 137Cs and 40K Isotopes in Pine (Pinus sylvestris L.) and Birch (Betula pendula Roth) Stands of Different Ages in a Selected Area of Eastern Poland. Forests 2021, 12, 1205. [Google Scholar] [CrossRef]
- Miller, K.M.; Kuiper, J.L.; Heifer, I.K. 137Cs Fallout Depth Distributions in Forest Versus Field Sites: Implications for External Gamma Dose Rates. J. Environ. Radioact. 1990, 12, 23–47. [Google Scholar] [CrossRef]
- Orlov, O.O.; Krasnov, V.P. Long-term dynamics of 137Cs radioactive contamination of wild berries and mushrooms in Polissia of Ukraine. Sci. Bull. 2001, 46, 172–179. (In Ukrainian) [Google Scholar]
- Zarubina, N.Y. 137Cs circulation in forest ecosystems on the territory of the Chernobyl exclusion zone (Plant). Rep. NAS Ukrain. 2022, 2, 89–95. [Google Scholar] [CrossRef]
- Salt, C.A.; Mayes, R.W. Seasonal variations in radiocesium uptake by reseeded hill pasture grazed at different intensities by sheep. J. Appl. Ecol. 1991, 28, 947–962. [Google Scholar] [CrossRef]
- Bunzl, K.; Kracke, W. Transfer von 137Cs und 90Sr in Mehl, Kleie und Stroh von Weizen, Roggen, Gerste und Hafer in den Jahren 1982, 1986 (Reaktorunfall in Tschernobyl) und 1987 in Feldversuchen. Z. Lebensm Unters Forch. 1989, 188, 439–444. (In German) [Google Scholar] [CrossRef]
- Nygren, P.; Hari, P.; Raunemaa, T.; Kulmala, M.; Luokkanen, S.; Holmberg, M.; Nikinmaa, E. Behaviour of 137Cs from Chernobyl fallout in a Scots pine canopy in southern Finland. Can. J. For. Res. 1994, 24, 1210–1215. [Google Scholar] [CrossRef]
- Orlov, O.O.; Dolin, V.V. Biogeochemistry of 137Cs for Forest-Swamp Ecosystems of the Ukrainian Polissia; Naukova Dumka: Kyiv, Ukraine, 2010. (In Ukrainian) [Google Scholar]
- Krasnov, V.P.; Orlov, A.A. Radioecology of Berry Plants (In Ukraine); Zhytomyr: Volyn, Ukraine, 2004. [Google Scholar]
- Grabovskyi, V.; Dzendzelyuk, O. Seasonal changes of 137Cs content in some medical herbs and berry plants from Western Ukraine. Visnyk Lviv. University. Ser. Biol. 2012, 58, 175–184. (In Ukrainian) [Google Scholar]
- Mukhamedshin, K.D.; Chilimov, A.I.; Bezuglov, V.K.; Snytkin, G.V. Certification of forest resources based on radiation characteristics, as the basis for obtaining normative-clean forestry products in the territory contaminated with radionuclides. In Questions of Forest Radioecology; MSFU: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Shcheglov, A.I. Biogeochemistry of Technogenic Radionuclides in Forest Ecosystems; Nauka: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Perevolotsky, A.N. Distribution of 137Cs and 90Sr in Forest Biogeocenoses; RIIPE “Institute of Radiology”: Minsk, Belarus, 2006; ISBN 985-6765-18-8. (In Russian) [Google Scholar]
- Zarubina, N. The influence of biotic and abiotic factors on 137Cs accumulation in higher fungi after the accident at Chornobyl NPP. J. Environ. Radioact. 2016, 161, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, V.P.; Melnyk, V.V.; Courbet, T.V.; Zhukovsky, O.V.; Zborovska, O.V.; Orlov, O.O. Dynamics of the specific activity of 137Cs in (Convallaria majalis L.) in the forest of Ukrainian Pollissia after the accident on ChNPP. Nucl. Phys. At. Energ. 2019, 20, 278–284. (In Ukrainian) [Google Scholar] [CrossRef]
- Velasco, R.H.; Toso, J.P.; Belli, M.; Sansone, U. Radiocesium in the northeastern part of Italy after the chernobyl accident: Vertical soil transport and soil-to-plant transfer. J. Environ. Radioact. 1997, 37, 73–83. [Google Scholar] [CrossRef]
- Methodological Recommendations for Organizing and Conducting Radio-Ecological Monitoring of Forests in the Chornobyl Exclusion Zone; Chornobyl, Ukraine, 1997. (In Ukrainian)
- Project of Organization and Development of Forestry of the State Specialized Enterprise “NORTHERN PUSHCHA”; Ukrainian State Project Forest Management Production Association: Irpin, Ukraine, 2017. (In Ukrainian)
- Zarubina, N.Y. 137Cs and 40K in the needles and branches of Scotch pine (Pinus sylvetris L.) on the territory of Chornobyl exclusion zone. Nucl. Phys. Atom. En. 2019, 20, 51–59. (In Russian) [Google Scholar] [CrossRef]
- Bé, M.-M.; Chisté, V.; Dulieu, C.; Browne, E.; Baglin, C.; Chechev, V.; Kuzmenko, N.; Helmer, R.; Kondev, F.; MacMahon, D.; et al. Table of Radionuclides, Cs-137; Monographie BIPM-5; Bureau International des Poids et Mesures, Pavillon de Breteuil: Sèvres, France, 2006; Volume 3, ISBN 92-822-2218-7. [Google Scholar]
- Lakin, G.F. Boimetriya; Higher School: Moscow, Russia, 1990; 350p. (In Russian) [Google Scholar]
- Orlov, O. Evaluation of mosses and lichens as test-objects of monitoring of 137Cs contamination of pine forest biogeocenoses in Ukrainian Polissia. Geochem. Technog 2022, 7, 33–37. [Google Scholar] [CrossRef]
- Bal, S.Ş.; Kurşat, M.; Kuluöztürk, M.F.; Çelik, Ş.K.; Yilmaz, E. Soil to plant transfer of 226Ra, 232Th and 137Cs to some medicinal and aromatic plants growing in Bitlis (Turkey). J. Environ. Radioact. 2023, 257, 107089. [Google Scholar] [CrossRef]
- Zarubina, N.Y. 137Cs circulation in forest ecosystems on the territory of the Chornobyl exclusion zone (Soil). Rep. NAS Ukrain. 2020, 10, 85–92. [Google Scholar] [CrossRef]
- Butkus, D.; Konstantinova, M. Studies of 137Cs transfer in soil-fern system. J. Environ. Eng. Lands. Manag. 2005, 13, 97–102. [Google Scholar] [CrossRef]
- Arkhipov, M.P.; Kuchma, M.D.; Davydchuk, V.S.; Arkhipov, A.M. The role of natural factors in the fixation of radionuclides in the exclusion zone. Bul. Ecol. Cond. Excl. Zone Zone Uncon. (Compul.) Resettl. 2001, 17, 36–42. (In Ukrainian) [Google Scholar]
- Imamura, N.; Komatsu, M.; Ohashi, S.; Hashimoto, S.; Kajimoto, T.; Kaneko, S.; Takano, T. Temporal Changes in the Radiocesium Distribution in Forests over the Five Years after the Fukushima Daiichi Nuclear Power Plant Accident. Available online: http://www.nature.com/scientificreports/7:8179 (accessed on 15 August 2017).
- Libbert, E. Plant Physiology; Mir: Moscow, Russia, 1976. (In Russian) [Google Scholar]
- Kramer, P.D.; Kozlovsky, T.T. Physiology of Woody Plants Physiology; Publishing House “Lesnaia Promyshlennost”: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Olsen, R.A.; Joner, E.J.; Bakken, L.R. Soil fungi and the fate of radiocaesium in the soil ecosystem–a discussion of possible mechanisms involted in the radiocaesium accumulation in fungi, and the role of fungi as a Cs-sink in the soil. In Transfer of Radionuclides in Natural and Semi-Natural Environment; Desmet, G., Nassimbeni, P., Belli, M., Eds.; Elsivier Applied Science: London, UK; New York, NY, USA, 1990; pp. 657–663. ISBN 1-85166-539-0. [Google Scholar]
- Dahlberg, A.; Nikolova, I.; Johanson, K.-J. Intraspecific variation in Cs-137 activity concentration in sporocarps of Suillus variegatus in seven Swedish population. Mycol. Res. 1997, 101, 545–551. [Google Scholar] [CrossRef]
Organ | Leliv | Paryshiv | Dytiatky |
---|---|---|---|
One-year-old needles | 429 ± 193 | 115 ± 81 | 1277 ± 605 |
One-year-old branches | 291 ± 174 | 88 ± 47 | 886 ± 632 |
Two-year-old needles | 161 ± 70 | 48 ± 16 | 458 ± 195 |
Two-year-old branches | 167 ± 63 | 65 ± 26 | 373 ± 163 |
Wood * | 556 ± 103 | 140 ± 32 | 90 ± 32 |
Outer bark ** | 7187 ± 4369 | 1195 ± 2587 | 293 ± 159 |
Organ | Leliv | Paryshiv | Dytiatky |
---|---|---|---|
1st needles–1st branches | 0.729 | 0.715 | 0.780 |
1st needles–2nd needles | 0.647 | 0.339 | 0.744 |
1st needles–2nd branches | 0.617 | 0.432 | 0.568 |
1st needles–wood | 0.213 | −0.214 | −0.231 |
1st needles–outer bark | −0.453 | −0.118 | −0.076 |
1st branches–2nd needles | 0.567 | 0.448 | 0.607 |
1st branches–2nd branches | 0.655 | 0.746 | 0.707 |
1st branches–wood | 0.081 | −0.441 | −0.183 |
1st branches–outer bark | −0.279 | −0.274 | −0.056 |
2nd needles–2nd branches | 0.704 | 0.479 | 0.635 |
2nd needles–wood | 0.280 | 0.029 | −0.191 |
2nd needles–outer bark | −0.313 | 0.000 | −0.339 |
2nd branches–wood | 0.281 | −0.445 | −0.151 |
2nd branches–outer bark | −0.245 | −0.316 | −0.103 |
Wood–outer bark | −0.467 | 0.396 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarubina, N. Circulation of 137Cs in Various Forest Plants in the Chornobyl Exclusion Zone during the Year. Ecologies 2023, 4, 310-324. https://doi.org/10.3390/ecologies4020020
Zarubina N. Circulation of 137Cs in Various Forest Plants in the Chornobyl Exclusion Zone during the Year. Ecologies. 2023; 4(2):310-324. https://doi.org/10.3390/ecologies4020020
Chicago/Turabian StyleZarubina, Nataliia. 2023. "Circulation of 137Cs in Various Forest Plants in the Chornobyl Exclusion Zone during the Year" Ecologies 4, no. 2: 310-324. https://doi.org/10.3390/ecologies4020020
APA StyleZarubina, N. (2023). Circulation of 137Cs in Various Forest Plants in the Chornobyl Exclusion Zone during the Year. Ecologies, 4(2), 310-324. https://doi.org/10.3390/ecologies4020020