A Simple Spatial Method for Identifying Point Clusters by Neighbourhood Relationships
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Themudo, G.E.C.; Østergaard, J.; Ersbøll, A.K. Persistent spatial clusters of plasmacytosis among Danish mink farms. Prev. Veter. Med. 2011, 102, 75–82. [Google Scholar] [CrossRef]
- Prodanov, D.; Nagelkerke, N.; Marani, E. Spatial clustering analysis in neuroanatomy: Applications of different approaches to motor nerve fiber distribution. J. Neurosci. Methods 2007, 160, 93–108. [Google Scholar] [CrossRef]
- Getis, A.; Drummy, P.; Gartin, J.; Gorr, W.; Harries, K.; Rogerson, P.; Stoe, D.; Wright, R. Geographic Information Science and Crime Analysis. URISA J. 2000, 12, 7–14. [Google Scholar]
- Anselin, L.; Hudak, S.; Anselin, L.; Hudak, S. Spatial econometrics in practice: A review of software options. Reg. Sci. Urban Econ. 1992, 22, 509–536. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Malheiro, A.; Oliveira, A.A.; Moutinho-Pereira, J.; Jones, G.V. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Clim. 2015, 36, 1–12. [Google Scholar] [CrossRef]
- King, D.A.; Bachelet, D.M.; Symstad, A.J.; King, D.A.; Bachelet, D.M.; Symstad, A.J. Climate change and fire effects on a prairie–woodland ecotone: Projecting species range shifts with a dynamic global vegetation model. Ecol. Evol. 2013, 3, 5076–5097. [Google Scholar] [CrossRef]
- Qiao, H.; Lin, C.; Jiang, Z.; Ji, L. Marble Algorithm: A solution to estimating ecological niches from presence-only records. Sci. Rep. 2015, 5, 14232. [Google Scholar] [CrossRef]
- Nelson, T.; Boots, B. Detecting spatial hot spots in landscape ecology. Ecography 2008, 31, 556–566. [Google Scholar] [CrossRef]
- Frost, C.L.; Bergmann, P.J. Spatial Distribution and Habitat Utilization of the Zebra-tailed Lizard (Callisaurus draconoides). South Am. J. Herpetol. 2012, 46, 203–208. [Google Scholar] [CrossRef]
- Brody, H.; Rip, M.R.; Vinten-Johansen, P.; Paneth, N.; Rachman, S. Map-making and myth-making in Broad Street: The London cholera epidemic, 1854. Lancet 2000, 356, 64–68. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S.J. Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Pianka, E.R. The Structure of Lizard Communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall: Hoboken, NJ, USA, 1988. [Google Scholar]
- Sokal, R.R.; Oden, N.L.; Thomson, B.A. Local spatial autocorrelation in biological variables. Biol. J. Linn. Soc. 1998, 65, 41–62. [Google Scholar] [CrossRef]
- Getis, A. A History of the Concept of Spatial Autocorrelation: A Geographer ’s Perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Cliff, A.; Ord, J. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 127–145. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 2010, 27, 93–115. [Google Scholar] [CrossRef]
- Byers, S.; Raftery, A.E. Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes. J. Am. Stat. Assoc. 1998, 93, 577–584. [Google Scholar] [CrossRef]
- Duque, J.C.; Aldstadt, J.; Velasquez, E.; Franco, J.L.; Betancourt, A. A computationally efficient method for delineating irregularly shaped spatial clusters. J. Geogr. Syst. 2010, 13, 355–372. [Google Scholar] [CrossRef]
- Estivill-Castro, V.; Lee, I. AMOEBA: Hierarchical Clustering Based on Spatial Proximity Using Delaunay Diagram. In Proceedings of the 9th International Symposium on Spatial Data Handling, Beijing, China, 10–12 August 2000; pp. 1–16. [Google Scholar]
- Deng, M.; Liu, Q.; Cheng, T.; Shi, Y. An adaptive spatial clustering algorithm based on delaunay triangulation. Comput. Environ. Urban Syst. 2011, 35, 320–332. [Google Scholar] [CrossRef]
- Liu, D.; Nosovskiy, G.V.; Sourina, O.; Liu, D.; Nosovskiy, G.V.; Sourina, O. Effective clustering and boundary detection algorithm based on Delaunay triangulation. Pattern Recognit. Lett. 2008, 29, 1261–1273. [Google Scholar] [CrossRef]
- Demattei, C.; Molinari, N.; Daurès, J.-P. SPATCLUS: An R package for arbitrarily shaped multiple spatial cluster detection for case event data. Comput. Methods Programs Biomed. 2006, 84, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okabe, A.; Funamoto, S. An Exploratory Method for Detecting Multi-Level Clumps in the Distribution of Points—A Computational Tool, VCM (Variable Clumping Method). J. Geograph. Syst. 2000, 2, 111–120. [Google Scholar] [CrossRef]
- Ng, R.T.; Han, J. Efficient and Effective Clustering Data Mining Methods for Spatial. In Proceedings of the 20th VLDB Conference, Santiago, Chile, 12–15 September 1994; pp. 144–155. [Google Scholar]
- Aldstadt, J.; Getis, A. Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial Clusters. Geogr. Anal. 2006, 38, 327–343. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- RCoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Sillero, N.; Argaña, E.; Matos, C.; Franch, M.; Kaliontzopoulou, A.; Carretero, M.A. Local Segregation of Realised Niches in Lizards. ISPRS Int. J. Geo-Inf. 2020, 9, 764. [Google Scholar] [CrossRef]
- Malo, J.E.; Suáez, F.; Díez, A. Can We Mitigate Animal-Vehicle Accidents Using Predictive Models? J. Appl. Ecol. 2004, 4, 701–710. [Google Scholar] [CrossRef]
- Sillero, N. Amphibian mortality levels on Spanish country roads: Descriptive and spatial analysis. Amphibia-Reptilia 2008, 29, 337–347. [Google Scholar] [CrossRef]
- Matos, C.; Sillero, N.; Argaña, E. Spatial analysis of amphibian road mortality levels in northern Portugal country roads. Amphibia-Reptilia 2012, 33, 469–483. [Google Scholar] [CrossRef]
- Medinas, D.; Marques, J.T.; Costa, P.; Santos, S.; Rebelo, H.; Barbosa, A.; Mira, A. Spatiotemporal persistence of bat roadkill hotspots in response to dynamics of habitat suitability and activity patterns. J. Environ. Manag. 2021, 277, 111412. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Getis, A. The spatial characteristics of stand structure in Pinus torreyana. Plant Ecol. 1999, 143, 153–170. [Google Scholar] [CrossRef]
- Gray, L.; He, F. Spatial point-pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta. For. Ecol. Manag. 2009, 259, 98–106. [Google Scholar] [CrossRef]
- Schenk, H.J.; Holzapfel, C.; Hamilton, J.G.; Mahall, B.E. Spatial ecology of a small desert shrub on adjacent geological substrates. J. Ecol. 2003, 91, 383–395. [Google Scholar] [CrossRef]
- Sillero, N.; Gonçalves-Seco, L. Spatial structure analysis of a reptile community with airborne LiDAR data. Int. J. Geogr. Inf. Sci. 2014, 28, 1709–1722. [Google Scholar] [CrossRef]
- Sillero, N.; Argaña, E.; Freitas, S.; García-Muñoz, E.; Arakelyan, M.; Corti, C.; Carretero, M.A. Short Term Spatial Structure of a Lizard (Darevskia Sp.) Community in Armenia. Acta Herpetol. 2018, 13, 155–163. [Google Scholar] [CrossRef]
- Sillero, N.; Gomes, V. Living in clusters: The local spatial segregation of a lizard community. Basic Appl. Herpetol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Underwood, A.J.; Chapman, M.G. Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 1996, 107, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Moody, A.L.; Thompson, W.A.; De Bruijn, B.; Houston, A.I.; Goss-Custard, J.D. The Analysis of the Spacing of Animals, with an Example Based on Oystercatchers during the Tidal Cycle. J. Anim. Ecol. 1997, 66, 615. [Google Scholar] [CrossRef]
- Manrique, O.L.H.; Sánchez-Fernández, D.; Verdú, J.R.; Numa, C.; Galante, E.; Lobo, J.M. Using local autocorrelation analysis to identify conservation areas: An example considering threatened invertebrate species in Spain. Biodivers. Conserv. 2012, 21, 2127–2137. [Google Scholar] [CrossRef]
Points & Clusters | Mean | SD | Min | Max |
---|---|---|---|---|
Random points | 98.86 | 15.68 | 66 | 141 |
NNIC points | 41.25 | 12.27 | 15 | 71 |
NNIC clusters | 31.72 | 11.31 | 8 | 66 |
NNC points | 51.56 | 14.97 | 26 | 88 |
N Points | NNIC Points | NNIC Clusters | NNC Points | EX NND | Z | p |
---|---|---|---|---|---|---|
397 | 351 | 117 | 280 | 2.11 | 0.44 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sillero, N. A Simple Spatial Method for Identifying Point Clusters by Neighbourhood Relationships. Ecologies 2021, 2, 305-312. https://doi.org/10.3390/ecologies2030017
Sillero N. A Simple Spatial Method for Identifying Point Clusters by Neighbourhood Relationships. Ecologies. 2021; 2(3):305-312. https://doi.org/10.3390/ecologies2030017
Chicago/Turabian StyleSillero, Neftalí. 2021. "A Simple Spatial Method for Identifying Point Clusters by Neighbourhood Relationships" Ecologies 2, no. 3: 305-312. https://doi.org/10.3390/ecologies2030017
APA StyleSillero, N. (2021). A Simple Spatial Method for Identifying Point Clusters by Neighbourhood Relationships. Ecologies, 2(3), 305-312. https://doi.org/10.3390/ecologies2030017