Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ligand Modeling and Preparation
3.2. Modeling PHF-Tau Protein and Ligand Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afsahi, S.; Lerner, M.B.; Goldstein, J.M.; Lee, J.; Tang, X.; Bagarozzi, D.A., Jr.; Pan, D.; Locascio, L.; Walker, A.; Barron, F.; et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018, 100, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal applications of fullerenes. Int. J. Nanomed. 2007, 2, 639–649. [Google Scholar]
- Benadiba, M.; Luurtsema, G.; Wichert-Ana, L.; Buchpigel, C.A. Novos alvos moleculares para tomografia por emissão de pósitrons (PET) e tomografia computadorizada por emissão de fóton único (SPECT) em doenças neurodegenerativas. Braz. J. Psychiatry 2012, 34, s125–s148. [Google Scholar] [CrossRef]
- Bennett, P.; Leifer, M.D. Early Diagnosis of Alzheimer’s Disease: Clinical and Economic Benefits. J. Am. Geriatr. Soc. 2003, 51, 281–288. [Google Scholar]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M.Y. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat. Rev. 2009, 8, 783–793. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566. [Google Scholar] [CrossRef]
- Chien, D.T.; Szardenings, A.K.; Bahri, S.; Walsh, J.C.; Mu, F.; Xia, C.; Shankle, W.R.; Lerner, A.J.; Su, M.Y.; Elizarov, A.; et al. Early Clinical PET Imaging Results with the Novel PHF-Tau Radioligand [F18]-T808. J. Alzheimer’s Dis. 2014, 38, 171–184. [Google Scholar] [CrossRef]
- Cullum, B.M.; Vo-Dinh, T. The development of optical nanosensors for biological measurements. Trends Biotechnol. 2000, 18, 388–393. [Google Scholar] [CrossRef]
- Da Róz, A.L. Grandes Áreas da Nanociência, 1st ed.; Elsevier: Rio de Janeiro, Brazil, 2015; Volume 2. [Google Scholar]
- Dugan, L.L.; Gabrielsen, J.K.; Shan, P.Y.; Lin, T.S.; Choi, D.W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 1996, 3, 129–135. [Google Scholar] [CrossRef]
- González-Durruthy, M.; Werhli, A.V.; Seus, V.; Machado, K.S.; Pazos, A.; Munteanu, C.R.; González-Díaz, H.; Monserrat, J.M. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. Nat. Sci. Rep. 2017, 7, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Erkekoglu, P.; Giray, B.K.; Basaran, N. 3R Principle and Alternative Toxicity Testing Methods. Fabad J. Pharm. Sci. 2011, 36, 101–117. [Google Scholar]
- Gasser, A.L.; Salamin, V.; Zumbach, S. Late life depression or prodromal Alzheimer’s disease: Which tools for the differential diagnosis? Encephale 2017, 44, 52–58. [Google Scholar] [CrossRef]
- Guimarães, C.R.W. As múltiplas Contribuições para a Complexação Proteína-Ligante: Consequências em Drug Design. Rev. Virtual Química 2012, 4, 348–364. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 257–262. [Google Scholar] [CrossRef]
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convulation neural networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Masters, L.C. Alzheimer’s disease. Nat. Rev. 2015, 1, 1–18. [Google Scholar] [CrossRef]
- Matsunaga, A.; Yoneda, M. Dementia due to Endocrine Diseases. Brain Nerve 2016, 68, 399–405. [Google Scholar] [PubMed]
- Passini, E.; Britton, O.J.; Lu, H.R.; Rohrbacher, J.; Hermans, A.N.; Gallacher, D.J.; Greig, R.J.; Bueno-Orovio, A.; Rodriguez, B. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Front. Physiol. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Prince, M.; Bryce, R.; Ferri, C. World Alzheimer Report 2011: The Benefits of Early Diagnosis and Intervention; Alzheimer’s Disease International: London, UK, 2011; Available online: https://www.alz.co.uk/research/WorldAlzheimerReport2011.pdf (accessed on 28 May 2017).
- Prince, M.; Bryce, R.; Ferri, C. The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015; Available online: http://www.worldalzreport2015.org/downloads/world-alzheimer-report-2015.pdf (accessed on 28 May 2017).
- Prince, M.; Comas-Herrera, A.; Knapp, M.; Guerchet, M.; Karagiannidou, M. Improving Healthcare for People Living with Dementia: Coverage, Quality and Costs Now and In the Future; Alzheimer’s Disease International: London, UK, 2016; Available online: https://www.alz.co.uk/research/WorldAlzheimerReport2016.pdf (accessed on 28 May 2017).
- Santos, L.J.D.; Rocha, G.P.; Alves, R.B.; Freitas, R.P.D. Fulereno [C60]: Química e aplicações. Química Nova 2010, 33, 680–693. [Google Scholar] [CrossRef]
- Scheltens, P. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Sloane, P.D.; Zimmerman, S.; Suchindran, C.; Reed, P.; Wang, L.; Boustani, M.; Sudha, S. The public health impact of Alzheimer’s disease, 2000-2050: Potential implication of treatment advances. Annu. Rev. Public Health 2002, 23, 213–231. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. Chem. Rev. 2002, 14, 2745–2779. [Google Scholar]
- Touhami, A. Biosensors and Nanobiosensors: Design and Applications. Nanomedicine 2015, 15, 374–400. [Google Scholar]
- Trott, O.; Olson, A.J. Autodock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comp. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Vilela Neto, O.P.; Pacheco, M.A.C. Nanotecnologia Computacional Inteligente: Concebendo a Engenharia em Nanotecnologia, 1st ed.; Interciência: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Villemagne, V.L.; Fodero-Tavoletti, M.T.; Masters, C.L.; Rowe, C.C. Tau imaging: Early progress and future directions. Lancet Neurol. 2015, 14, 114–124. [Google Scholar] [CrossRef]
- Wang, Y.; Bryant, S.H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B.A.; Thiessen, P.A.; He, S.; Zhang, J. Pubchem BioAssay: 2017 update. Nucleic Acids Res. 2016, 45, 955–963. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Yang, Y.; Yuan, Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 2018, 129, 380–395. [Google Scholar] [CrossRef]
Docking System ID | Docking Systems | Affinity (kcal/mol) | RMSD (Å) |
---|---|---|---|
1 | PHF—18F-FDDNP + fullerol | −5.9 | 1.356 |
2 | PHF—18F-T807 + fullerol | −6.0 | 1.617 |
3 | PHF—18F-T808 + fullerol | −5.7 | 1.344 |
4 | PHF—18F-THK523 + fullerol | −5.6 | 1.598 |
5 * | PHF—18F-THK5105 + fullerol | −7.0 | 1.491 |
6 | PHF—18F-THK5117 + fullerol | −6.8 | 1.628 |
7 | PHF—18F-THK5351 + fullerol | −6.6 | 1.360 |
8 | PHF—11C-N-methyl lansoprazole + fullerol | −6.6 | 1.394 |
9 | PHF—11C-PBB3 + fullerol | −6.3 | 1.050 |
Parameters | Values |
---|---|
Initial distance | 2.83Å |
Final distance | 2.80 Å |
Binding energy | −0.9 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira Schopf, P.; Zanella, I.; D. S. Cordeiro, M.N.; Ruso, J.M.; González-Durruthy, M.; Ortiz Martins, M. Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach. Biophysica 2021, 1, 76-86. https://doi.org/10.3390/biophysica1020007
Ferreira Schopf P, Zanella I, D. S. Cordeiro MN, Ruso JM, González-Durruthy M, Ortiz Martins M. Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach. Biophysica. 2021; 1(2):76-86. https://doi.org/10.3390/biophysica1020007
Chicago/Turabian StyleFerreira Schopf, Patricia, Ivana Zanella, M. Natália D. S. Cordeiro, Juan M. Ruso, Michael González-Durruthy, and Mirkos Ortiz Martins. 2021. "Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach" Biophysica 1, no. 2: 76-86. https://doi.org/10.3390/biophysica1020007
APA StyleFerreira Schopf, P., Zanella, I., D. S. Cordeiro, M. N., Ruso, J. M., González-Durruthy, M., & Ortiz Martins, M. (2021). Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach. Biophysica, 1(2), 76-86. https://doi.org/10.3390/biophysica1020007