Combined Cognitive and Exercise Training Enhances Muscular Strength and Endurance: A Pilot Study
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.3. Resistance Exercise Tests
2.4. Cognitive Training Tasks
2.5. Procedure
2.6. Statistical Analyses
3. Results
3.1. Tests of Muscular Strength and Endurance
3.2. Training
4. Discussion
4.1. Muscular Strength and Endurance
4.2. Combined Training
5. Study Limitations and Future Research Directions
Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brehm, J.W.; Self, E.A. The intensity of motivation. Annu. Rev. Psychol. 1989, 40, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Marcora, S. Psychobiology of fatigue during endurance exercise. In Endurance Performance in Sport; Meijen, C., Ed.; Routledge: Abingdon, UK, 2019; pp. 15–34. [Google Scholar]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Alix-Fages, C.; Grgic, J.; Jiménez-Martínez, P.; Baz-Valle, E.; Balsalobre-Fernández, C. Effects of mental fatigue on strength endurance: A systematic review and meta-analysis. Mot. Control. 2023, 27, 442–461. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.Y.; Zuniga, A.F.; Mulla, D.M.; Mendonca, D.; Keir, P.J.; Bray, S.R. Investigating the effects of mental fatigue on resistance exercise performance. Int. J. Environ. Res. Public. Health 2021, 18, 6794. [Google Scholar] [CrossRef]
- de Lima-Junior, D.; Gantois, P.; Nakamura, F.Y.; Marcora, S.M.; Batista, G.R.; Bartolomei, S.; Ferreira, M.E.C.; Fortes, S. Mental fatigue impairs the number of repetitions to muscular failure in the half back-squat exercise for low- and mid- but not high-intensity resistance exercise. Eur. J. Sport. Sci. 2024, 24, 395–404. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W. The limit to exercise tolerance in humans: Mind over muscle? Eur. J. Appl. Physiol. 2010, 109, 763–770. [Google Scholar] [CrossRef]
- Terry, P.C.; Karageorghis, C.I.; Curran, M.L.; Martin, O.V.; Parsons-Smith, R.L. Effects of music in exercise and sport: A meta-analytic review. Psychol. Bull. 2020, 146, 91–117. [Google Scholar] [CrossRef]
- Washmuth, N.B.; Stephens, R.; Ballmann, C.G. Effect of swearing on physical performance: A mini-review. Front. Psychol. 2024, 15, 1445175. [Google Scholar] [CrossRef]
- Zhao, H.; Kurokawa, T.; Tajima, M.; Liu, Z.; Okada, J. perceived exertion reflects fatigue conditions during power-aimed resistance training. Int. J. Sports Med. 2025, 46, 437–445. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W.; Merlini, M. A randomized controlled trial of Brain Endurance Training (BET) to reduce fatigue during exercise. Med. Sci. Sports Exerc. 2015, 47, 198. [Google Scholar] [CrossRef]
- Barzegarpoor, H.; Rajabi, H.; Button, D.; Fayazmilani, R. The effect of simultaneous physical and brain endurance training on fatigue and exercise tolerance inactive people. J. Pract. Stud. Biosci. Sport 2021, 9, 72–83. [Google Scholar] [CrossRef]
- Staiano, W.; Bonet, L.R.S.; Romagnoli, M.; Ring, C. Mental fatigue: The cost of cognitive loading on weight lifting, resistance training, and cycling performance. Int. J. Sports Physiol. Perform. 2023, 18, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Staiano, W.; Merlini, M.; Romagnoli, M.; Kirk, U.; Ring, C.; Marcora, S. Brain endurance training improves physical, cognitive, and multitasking performance in professional football players. Int. J. Sports Physiol. Perform. 2022, 17, 1732–1740. [Google Scholar] [CrossRef]
- Dallaway, N.; Lucas, S.; Marks, J.; Ring, C. Prior brain endurance training improves endurance exercise performance. Eur. J. Sports Sci. 2023, 23, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Dallaway, N.; Lucas, S.J.; Ring, C. Concurrent brain endurance training improves endurance exercise performance. J. Sci. Med. Sport 2021, 24, 405–411. [Google Scholar] [CrossRef]
- Dallaway, N.; Mortimer, H.; Gore, A.; Ring, C. Brain endurance training improves dynamic calisthenic exercise and benefits novel exercise and cognitive performance: Evidence of performance enhancement and near transfer of training. J. Strength Cond. Res. 2024, 38, 1704–1713. [Google Scholar] [CrossRef]
- Díaz-García, J.; García-Calvo, T.; Ring, C. Brain endurance training improves sedentary older adults’ cognitive and physical performance when fresh and fatigued. Psychol. Sport Exerc. 2024, 76, 102757. [Google Scholar] [CrossRef]
- Androulakis-Korakakis, P.; Fisher, J.P.; Steele, J. The minimum effective training dose required to increase 1RM strength in resistance-trained men: Systematic review and meta-analysis. Sports Med. 2020, 50, 751–765. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Muscle strength preservation during repeated sets of fatiguing resistance exercise: A secondary analysis. J. Strength Cond. Res. 2024, 38, 1149–1156. [Google Scholar] [CrossRef]
- Jacquet, T.; Poulin-Charronnat, B.; Bard, P.; Lepers, R. Persistence of mental fatigue on motor control. Front. Psychol. 2021, 11, 588253. [Google Scholar] [CrossRef]
- Nien, J.-T.; Chen, N.-C.; Kee, Y.-H.; Wu, C.-H.; Ahn, J.; Yu, C.-Y.; Chi, L.; Chang, Y.-K. Athletes with meditation experience counteract the detrimental effect of mental fatigue on endurance performance and neurocognitive functions. J. Sports Sci. 2024, 42, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.A.; Thomas, A.W.; Prato, F.S.; Johansson, M.; Nittby, H.; Lamm, C. Simultaneous fMRI and EEG during the multi-Source interference task. PLoS ONE 2014, 9, e114599. [Google Scholar] [CrossRef] [PubMed]
- Dass, J.D.; Fatt, O.T.; Bin Ong, W. Relationship between music genre and the flow state during training amongst gym-goers. Malays. J. Mov. Health Exerc. 2023, 12, 95–99. [Google Scholar] [CrossRef]
- Hall, F.C.; Noonan, R.J. A qualitative study of how and why gym-based resistance training may benefit women’s mental health and wellbeing. Perform. Enhanc. Health 2023, 11, 100254. [Google Scholar] [CrossRef]
- Dietrich, A. Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Conscious. Cogn. 2003, 12, 231–256. [Google Scholar] [CrossRef]
- Dietrich, A. Neurocognitive mechanisms underlying the experience of flow. Conscious. Cogn. 2004, 13, 746–761. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Toward a psychology of optimal experience. In Flow and The Foundations of Positive Psychology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 209–226. [Google Scholar]
- Jung, M.; Ryu, S.; Kang, M.; Javadi, A.-H.; Loprinzi, P.D. Evaluation of the transient hypofrontality theory in the context of exercise: A systematic review with meta-analysis. Q. J. Exp. Psychol. 2022, 75, 1193–1214. [Google Scholar] [CrossRef]
- Chmura, J.; Chmura, P.; Konefał, M.; Batra, A.; Mroczek, D.; Kosowski, M.; Młynarska, K.; Andrzejewski, M.; Rokita, A.; Ponikowski, P. The effects of a marathon effort on psychomotor performance and catecholamine concentration in runners over 50 years of age. Appl. Sci. 2020, 10, 2067. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Garcia, W.F.; Junior, J.R.A.N.; Mizoguchi, M.V.; Brandão, M.R.F.; Fiorese, L. Transcultural adaptation and psychometric support for a Brazilian Portuguese version of the flow state scale (FSS-2). Percept. Mot. Ski. 2022, 129, 800–815. [Google Scholar] [CrossRef]
- Jackson, S.A.; Eklund, R.C. Assessing flow in physical activity: The flow state scale-2 and dispositional flow scale-2. J. Sport Exerc. Psychol. 2002, 24, 133–150. [Google Scholar] [CrossRef]
- Jackson, S.A.; Marsh, H.W. Development and validation of a scale to measure optimal experience: The Flow State Scale. J. Sport Exerc. Psychol. 1996, 18, 17–35. [Google Scholar] [CrossRef]
- McAuley, E.; Duncan, T.; Tammen, V.V. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Res. Q. Exerc. Sport 1987, 60, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Pope, Z.K.; Benik, F.M.; Hester, G.M.; Sellers, J.; Nooner, J.L.; Schnaiter, J.A.; Bond-Williams, K.E.; Carter, A.S.; Ross, C.L.; et al. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J. Strength Cond. Res. 2016, 30, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef]
- Guerriero, A.; Varalda, C.; Piacentini, M.F. The role of velocity based training in the strength periodization for modern athletes. J. Funct. Morphol. Kinesiol. 2018, 3, 55. [Google Scholar] [CrossRef]
- Kasicki, K.; Rydzik, Ł.; Ambroży, T. The impact of PAPE protocols on barbell velocity during the bench press in trained individuals: A systematic review. Appl. Sci. 2025, 15, 4648. [Google Scholar] [CrossRef]
- Díaz-García, J.; López-Gajardo, M.Á.; Parraca, J.A.; Batalha, N.; López-Rodríguez, R.; Ring, C. Brain endurance training improves and maintains chest press and squat jump performance when fatigued. J. Strength Cond. Res. 2024, 38, 1568–1575. [Google Scholar] [CrossRef]
- Mortimer, H.; Ring, C. Brain Endurance Training improves upper body resistance exercise. In Proceedings of the ECSS Conference, Rimini, Italy, 1–4 July 2025. [Google Scholar]
- Silva, V.L.; Azevedo, A.P.; Cordeiro, J.P.; Duncan, M.J.; Siqueira-Filho, J.M.C.M.A.; Zanchi, N.E.; Guimarães-Ferreira, L. Effects of exercise intensity on perceived exertion during multiple sets of bench press to volitional failure. J. Trainol. 2014, 3, 41–46. [Google Scholar] [CrossRef]
- Robertson, C.V.; Marino, F.E. A role for the prefrontal cortex in exercise tolerance and termination. J. Appl. Physiol. 2016, 120, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Janiszewski, C.; Zheng, Y.; Laran, J.; Jang, W.E. Deriving mental energy from task completion. Front. Psychol. 2021, 12, 717414. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, N.; Musslick, S.; Berry, A.S.; Vassena, E. An integrative effort: Bridging motivational intensity theory and recent neurocomputational and neuronal models of effort and control allocation. Psychol. Rev. 2023, 130, 1081–1103. [Google Scholar] [CrossRef] [PubMed]
- Loy, B.D.; O’COnnor, P.J.; Dishman, R.K. The effect of a single bout of exercise on energy and fatigue states: A systematic review and meta-analysis. Fatigue Biomed. Health Behav. 2013, 1, 223–242. [Google Scholar] [CrossRef]
- Öner, Ç. The determinative role of athletic mental energy and mindfulness in the flow experience of football players. Int. J. Educ. Technol. Sci. Res. 2022, 7, 2052–2085. [Google Scholar] [CrossRef]
- Holmberg, P.M.; Harrison, P.W.; Jenkins, D.G.; Kelly, V.G. Factors modulating the priming response to resistance and stretch-shortening cycle exercise stimuli. Strength Cond. J. 2023, 45, 188–206. [Google Scholar] [CrossRef]
- Tan, K.; Kakehata, G.; Lim, J. The use of acute exercise interventions as priming strategies to improve physical performance during track-and-field competitions. Strength. Cond. J. 2024, 46, 587–597. [Google Scholar] [CrossRef]
- Díaz-García, J.; Rubio-Morales, A.; Manzano-Rodríguez, D.; García-Calvo, T.; Ring, C. Cognitive priming during warmup enhances sport and exercise performance: A goldilocks effect. Brain Sci. 2025, 15, 235. [Google Scholar] [CrossRef]
Measure | Testing Session | F(3,21) | p | ηp2 | |||
---|---|---|---|---|---|---|---|
1 (Pre) | 2 (Early) | 3 (Late) | 4 (Post) | ||||
1RM (kg) | 74.56 (46.28, 102.85) | 76.63 a (47.83, 105.42) | 78.19 a,b (48.97, 107.40) | 82.56 a,b,c (53.55, 111.57) | 58.24 | *** | 0.89 |
Relative 1RM (kg/kg) | 1.03 (0.75, 1.31) | 1.05 a (0.77, 1.33) | 1.07 a,b (0.79, 1.35) | 1.14 a,b,c (0.86, 1.43) | 39.32 | *** | 0.85 |
AMRAP (n) | 23.38 (19.26, 17.49) | 24.19 (20.01,28.37) | 25.25 (20.53, 29.97) | 28.50 a,b,c (23.67, 33.33) | 7.58 | *** | 0.52 |
Session RPE | 6.72 (6.13, 7.32) | 7.26 a (6.81, 7.71) | 7.24 a (6.64, 7.84) | 7.06 (6.31, 7.81) | 3.79 | * | 0.35 |
PFTT RT (ms) | 523 (448, 598) | 525 (463, 587) | 535 (465, 606) | 521 (443, 598) | 0.06 | 0.01 | |
Mental Fatigue (0–10) | 2.44 (1.33, 3.54) | 1.81 a (0.63, 2.99) | 1.38 a (0.55, 2.20) | 1.25 a,b (0.30, 2.20) | 10.52 | *** | 0.60 |
Mean Velocity (m/s) | 0.38 (0.30, 0.45) | 0.41 (0.35, 0.47) | 0.43 (0.37, 0.50) | 0.46 a (0.40, 0.53) | 3.72 | * | 0.35 |
Maximum Velocity (m/s) | 0.55 (0.47, 0.66) | 0.58 (0.50, 0.66) | 0.62 b (0.54, 0.70) | 0.65 b (0.55, 0.75) | 3.63 | * | 0.34 |
Press Duration (ms) | 957 (813, 1101) | 839 (768, 910) | 795 a (712, 879) | 755 a,b (668, 843) | 6.56 | ** | 0.48 |
Inter-Repetition Delay (ms) | 916 (624, 1208) | 879 (601, 1156) | 788 (618, 957) | 709 a (577, 840) | 3.28 | * | 0.32 |
Measure | Training Sessions (Blocks) | F(2,14) | p | ηp2 | ||
---|---|---|---|---|---|---|
1–2 | 3–4 | 5–6 | ||||
RPE (0–10) | 6.56 (5.90, 7.21) | 6.88 (6.24, 7.51) | 7.04 (6.31, 7.78) | 2.51 | 0.30 | |
RIR (n) | 2.29 (1.50, 3.08) | 2.18 (1.42, 2.94) | 2.01 (1.41, 2.60) | 1.88 | 0.24 | |
PFTT RT (ms) | 501 (439, 564) | 547 a (513, 581) | 567 a (500, 634) | 3.73 | * | 0.35 |
Mental Fatigue (0–10) | 2.19 (0.95, 3.43) | 1.58 (0.54, 2.62) | 1.88 (0.66, 3.09) | 3.38 | 0.33 | |
Mean Velocity (m/s) | 0.26 (0.22, 0.30) | 0.26 (0.22, 0.31) | 0.26 (0.22, 0.31) | 0.02 | 0.00 | |
Maximum Velocity (m/s) | 0.39 (0.34, 0.44) | 0.38 (0.32, 0.44) | 0.38 (0.31, 0.45) | 0.34 | 0.05 | |
Press Duration (ms) | 1264 (1113, 1416) | 1240 (1112, 1368) | 1205 (1333, 1276) | 0.52 | 0.07 | |
Inter-Repetition Delay (ms) | 1147 (924, 1370) | 1036 (833, 1239) | 962 (840, 1084) | 3.28 | 0.32 | |
Action–Awareness Merging (1–7) | 5.50 (4.88, 6.12) | 5.91 (5.18, 6.63) | 6.06 (5.41, 6.71) | 1.91 | 0.21 | |
Concentration on Task (1–7) | 5.53 (5.09, 5.97) | 5.56 (4.79, 6.33) | 5.84 (4.99, 6.70) | 0.86 | 0.11 | |
Transformation of Time (1–7) | 4.66 (3.92, 5.39) | 4.91 (4.25, 5.57) | 4.94 (4.10, 5.77) | 0.76 | 0.10 | |
Enjoyment (1–7) | 5.44 (4.93, 5.94) | 5.63 (5.97, 6.28) | 5.84 a (5.29, 6.40) | 5.02 | * | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rautu, A.; Díaz-García, J.; Ring, C. Combined Cognitive and Exercise Training Enhances Muscular Strength and Endurance: A Pilot Study. NeuroSci 2025, 6, 63. https://doi.org/10.3390/neurosci6030063
Rautu A, Díaz-García J, Ring C. Combined Cognitive and Exercise Training Enhances Muscular Strength and Endurance: A Pilot Study. NeuroSci. 2025; 6(3):63. https://doi.org/10.3390/neurosci6030063
Chicago/Turabian StyleRautu, Alexandru, Jesús Díaz-García, and Christopher Ring. 2025. "Combined Cognitive and Exercise Training Enhances Muscular Strength and Endurance: A Pilot Study" NeuroSci 6, no. 3: 63. https://doi.org/10.3390/neurosci6030063
APA StyleRautu, A., Díaz-García, J., & Ring, C. (2025). Combined Cognitive and Exercise Training Enhances Muscular Strength and Endurance: A Pilot Study. NeuroSci, 6(3), 63. https://doi.org/10.3390/neurosci6030063