Meta-Analysis of Exercise Effects on Cognition in Persons with Parkinson’s Disease
Abstract
1. Introduction
2. Materials and Methods
- Included individuals with a Parkinson’s disease diagnosis.
- Performed assessment using Trail Making Tests Part A, or the MoCA.
- Excluded dual-task interventions.
- Used a physical activity for treatment or intervention.
- Written in the English language, and full text available.
- Published in a peer-reviewed journal.
- Published between 2018 and October 2023 (these are the dates the database spans).
2.1. Literature Search
2.2. Review Process
2.3. Meta-Analysis Calculation Formulae
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s Disease |
AD | Alzheimer’s Disease |
BDNF | Brain-derived Neurotrophic Factor |
UPDRS | Unified Parkinson’s Disease Rating Scale |
MoCA | Montreal Cognitive Assessment |
MAPT | Microtubule-Associated Protein Tau |
CI | Confidence Interval |
References
- Ahmad, S.O.; Longhurst, J.; Stiles, D.; Downard, L.; Martin, S. A meta-analysis of exercise intervention and the effect on Parkinson’s Disease symptoms. Neurosci. Lett. 2023, 801, 137162. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.O.; Stiles, D.; Born, E.; Scheffler, J.; Vogel, K. Commentary on A Meta-Analysis of Exercise Intervention and the Effect on Parkinson’s Disease Symptoms: What Activities Are Best? Appl. Sci. 2024, 14, 7236. [Google Scholar] [CrossRef]
- Poplawska-Domaszewicz, K.; Qamar, M.A.; Pecurariu, C.F.; Chaudhuri, K.R. Recognition and characterising non-motor profile in early onset Parkinson’s disease (EOPD). Park. Relat. Disord. 2024, 129, 107123. [Google Scholar] [CrossRef]
- Popovic, Z.; Kuric, T.G.; Latic, I.R.; Matosa, S.; Sadikov, A.; Groznik, V.; Georgiev, D.; Tomic, S. Correlation between non-motor symptoms and eye movements in Parkinson’s disease patients. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2025, 46, 2665–2673. [Google Scholar] [CrossRef]
- Cass, S.P. Alzheimer’s Disease and Exercise: A Literature Review. Curr. Sports Med. Rep. 2017, 16, 19–22. [Google Scholar] [CrossRef]
- Augusto-Oliveira, M.; Arrifano, G.P.; Leal-Nazaré, C.G.; Santos-Sacramento, L.; Lopes-Araújo, A.; Royes, L.F.F.; Crespo-Lopez, M.E. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol. Neurobiol. 2023, 60, 6950–6974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gu, B.; Zhen, K.; Du, L.; Lv, Y.; Yu, L. Effects of exercise on brain-derived neurotrophic factor in Alzheimer’s disease models: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2024, 126, 105538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R. Exercise mimetics: A novel strategy to combat neuroinflammation and Alzheimer’s disease. J. Neuroinflammation 2024, 21, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baldassarre, I.; Rotondo, R.; Piccardi, L.; Leonardi, L.; Lanni, D.; Gaglione, M.; Stocchi, F.; Fini, M.; Goffredo, M.; Padua, E.; et al. The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis. J. Clin. Med. 2024, 13, 3884. [Google Scholar] [CrossRef] [PubMed Central]
- Lin, Y.-P.; Lin, I.-I.; Chiou, W.-D.; Chang, H.-C.; Chen, R.-S.; Lu, C.-S.; Chan, H.-L.; Chang, Y.-J. Optimizing rehabilitation strategies in Parkinson’s disease: A comparison of dual cognitive-walking treadmill training and single treadmill training. Sci. Rep. 2024, 14, 25210. [Google Scholar] [CrossRef] [PubMed Central]
- Domingues, V.L.; Makhoul, M.P.; de Freitas, T.B.; Polese, J.C.; Silva-Batista, C.; Barbieri, F.A.; Torriani-Pasin, C. Factors Associated With Physical Activity and Sedentary Behavior in People With Parkinson Disease: A Systematic Review and Meta-Analysis. Phys. Ther. 2024, 104, pzae114. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ezeugwa, J.; Ezeugwu, V.E. A systematic review of the associations between sedentary behavior, physical inactivity, and non-motor symptoms of Parkinson’s disease. PLoS ONE 2024, 19, e0293382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Liu, S.; Xu, K.; Zhou, Y.; Shen, Y.; Liu, Z.; Bai, Y.; Wang, S. Non-pharmacological therapies for treating non-motor symptoms in patients with Parkinson’s disease: A systematic review and meta-analysis. Front. Aging Neurosci. 2024, 16, 1363115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chartier, C.; Godard, J.; Durand, S.; Humeau-Heurtier, A.; Menetrier, E.; Allain, P.; Besnard, J. Combinations of physical and cognitive training for subcortical neurodegenerative diseases with physical, cognitive and behavioral symptoms: A systematic review. Neurol. Sci. 2024, 45, 5571–5589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, D.K.; Sacheli, M.A.; Eng, J.J.; Stoessl, A.J. The effects of exercise on cognition in Parkinson’s disease: A systematic review. Transl. Neurodegener. 2014, 3, 5. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Patel, B.B. Validation of Montreal Cognitive Assessment, MoCA, Alternate French Versions—ERRATUM. Can. J. Neurol. Sci./J. Can. Sci. Neurol. 2023, 50, 161. [Google Scholar] [CrossRef]
- Islam, N.; Hashem, R.; Gad, M.; Brown, A.; Levis, B.; Renoux, C.; Thombs, B.D.; McInnes, M.D. Accuracy of the Montreal Cognitive Assessment tool for detecting mild cognitive impairment: A systematic review and meta-analysis. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2023, 19, 3235–3243. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Wang, J.; Cao, Y.; Feng, C.; Guo, Y.; Zong, G.; Sun, L.; Gao, X. Family History of AD/Dementia, Polygenic Risk Score for AD, and Parkinson’s Disease. Mov. Disord. Clin. Pr. 2023, 10, 1787–1794. [Google Scholar] [CrossRef]
- Ohlei, O.; Sommerer, Y.; Dobricic, V.; Homann, J.; Deecke, L.; Schilling, M.; Bartrés-Faz, D.; Cattaneo, G.; Düzel, S.; Fjell, A.M.; et al. Genome-wide QTL mapping across three tissues highlights several Alzheimer’s and Parkinson’s disease loci potentially acting via DNA methylation. medRxiv 2023. medRxiv:2023.12.22.23300365. [Google Scholar]
- Walker, L.; Attems, J. Prevalence of Concomitant Pathologies in Parkinson’s Disease: Implications for Prognosis, Diagnosis, and Insights into Common Pathogenic Mechanisms. J. Park. Dis. 2024, 14, 35–52. [Google Scholar] [CrossRef]
- van Wetering, J.; Geut, H.; Bol, J.J.; Galis, Y.; Timmermans, E.; Twisk, J.W.; Hepp, D.H.; Morella, M.L.; Pihlstrom, L.; Lemstra, A.W.; et al. Neuroinflammation is associated with Alzheimer’s disease co-pathology in dementia with Lewy bodies. Acta Neuropathol. Commun. 2024, 12, 73. [Google Scholar] [CrossRef]
- Abraham, A.; Hart, A.; Andrade, I.; Hackney, M.E. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson’s Disease. Neural Plast. 2018, 2018, 6168507. [Google Scholar] [CrossRef]
- Elpidoforou, M.; Bakalidou, D.; Drakopoulou, M.; Kavga, A.; Chrysovitsanou, C.; Stefanis, L. Effects of a structured dance program in Parkinson’s disease. A Greek pilot study. Complement. Ther. Clin. Pr. 2022, 46, 101528. [Google Scholar] [CrossRef]
- Liu, H.-H.; Wang, R.-Y.; Cheng, S.-J.; Liao, K.-K.; Zhou, J.-H.; Yang, Y.-R. Effects of square-stepping exercise on executive function in individuals with Parkinson’s disease: A randomized controlled pilot study. Geriatr. Nurs. 2022, 47, 273–279. [Google Scholar] [CrossRef]
- Moratelli, J.; Alexandre, K.H.; Boing, L.; Swarowsky, A.; Corrêa, C.L.; Guimarães, A.C.d.A. Binary dance rhythm or Quaternary dance rhythm which has the greatest effect on non-motor symptoms of individuals with Parkinson’s disease? Complement. Ther. Clin. Pr. 2021, 43, 101348. [Google Scholar] [CrossRef]
- Michels, K.; Dubaz, O.; Hornthal, E.; Bega, D. “Dance Therapy” as a psychotherapeutic movement intervention in Parkinson’s disease. Complement. Ther. Med. 2018, 40, 248–252. [Google Scholar] [CrossRef]
- Frisaldi, E.; Bottino, P.; Fabbri, M.; Trucco, M.; De Ceglia, A.; Esposito, N.; Barbiani, D.; Camerone, E.M.; Costa, F.; Destefanis, C.; et al. Effectiveness of a dance-physiotherapy combined intervention in Parkinson’s disease: A randomized controlled pilot trial. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2021, 42, 5045–5053. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Tai, C.-H.; Fisher, B.E. Training in Varying Environmental Contexts Facilitates Transfer of Improved Gait Performance to New Contexts for Individuals With Parkinson Disease: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 1917–1923. [Google Scholar] [CrossRef]
- Burt, J.; Ravid, E.; Bradford, S.; Fisher, N.J.; Zeng, Y.; Chomiak, T.; Brown, L.; McKeown, M.J.; Hu, B.; Camicioli, R. The Effects of Music-Contingent Gait Training on Cognition and Mood in Parkinson Disease: A Feasibility Study. Neurorehabilit. Neural Repair 2020, 34, 82–92. [Google Scholar] [CrossRef]
- Valenzuela, C.S.M.; Moscardó, L.D.; López-Pascual, J.; Serra-Añó, P.; Tomás, J.M. Effects of Dual-Task Group Training on Gait, Cognitive Executive Function, and Quality of Life in People With Parkinson Disease: Results of Randomized Controlled DUALGAIT Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1849–1856. [Google Scholar] [CrossRef]
- Hajebrahimi, F.; Velioglu, H.A.; Bayraktaroglu, Z.; Yilmaz, N.H.; Hanoglu, L. Clinical evaluation and resting state fMRI analysis of virtual reality based training in Parkinson’s disease through a randomized controlled trial. Sci. Rep. 2022, 12, 8024. [Google Scholar] [CrossRef]
- Wang, Z.; Pi, Y.; Tan, X.; Chen, R.; Liu, Y.; Guo, W.; Zhang, J. Effects of Wu Qin Xi exercise on reactive inhibition in Parkinson’s disease: A randomized controlled clinical trial. Front. Aging Neurosci. 2022, 14, 961938. [Google Scholar] [CrossRef]
- Kafle, A.; Rizvi, S.R. Effect of Wii-Based Motor and Cognitive Training on Activities of Daily Living in Patients with Parkinson’s Disease. Indian J. Physiother. Occup. Ther. Int. J. 2021, 15, 1–7. [Google Scholar] [CrossRef]
- Sacheli, M.A.; Neva, J.L.; Lakhani, B.; Msc, D.K.M.; Vafai, N.; Shahinfard, E.; English, C.; McCormick, S.; Dinelle, K.; Neilson, N.; et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 1891–1900. [Google Scholar] [CrossRef]
- van der Kolk, N.M.; de Vries, N.M.; Kessels, R.P.C.; Joosten, H.; Zwinderman, A.H.; Post, B.; Bloem, B.R. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: A double-blind, randomised controlled trial. Lancet Neurol. 2019, 18, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Paul, S.S.; Caetano, M.J.D.; Smith, S.; Dibble, L.E.; Love, R.; Schoene, D.; Menant, J.C.; Sherrington, C.; Lord, S.R.; et al. Home-based step training using videogame technology in people with Parkinson’s disease: A single-blinded randomised controlled trial. Clin. Rehabil. 2018, 32, 299–311. [Google Scholar] [CrossRef]
- Harper, S.A.; Dowdell, B.T.; Kim, J.H.; Pollock, B.S.; Ridgel, A.L. Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 2104. [Google Scholar] [CrossRef]
- King, L.A.; Mancini, M.; Smulders, K.; Harker, G.; Lapidus, J.A.; Ramsey, K.; Carlson-Kuhta, P.; Fling, B.W.; Nutt, J.G.; Peterson, D.S.; et al. Cognitively Challenging Agility Boot Camp Program for Freezing of Gait in Parkinson Disease. Neurorehabilit. Neural Repair 2020, 34, 417–427. [Google Scholar] [CrossRef]
- Silva-Batista, C.; Corcos, D.M.; Kanegusuku, H.; Piemonte, M.E.P.; Gobbi, L.T.B.; de Lima-Pardini, A.C.; de Mello, M.T.; Forjaz, C.L.; Ugrinowitsch, C. Balance and fear of falling in subjects with Parkinson’s disease is improved after exercises with motor complexity. Gait Posture 2018, 61, 90–97. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef]
- Johansson, M.E.; Cameron, I.G.M.; Van der Kolk, N.M.; de Vries, N.M.; Klimars, E.; Toni, I.; Bloem, B.R.; Helmich, R.C. Aerobic Exercise Alters Brain Function and Structure in Parkinson’s Disease: A Randomized Controlled Trial. Ann. Neurol. 2022, 91, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.; Folkerts, A.-K.; Gollan, R.; Lieker, E.; Caro-Valenzuela, J.; Adams, A.; Cryns, N.; Monsef, I.; Dresen, A.; Roheger, M.; et al. Physical exercise for people with Parkinson’s disease: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2023, 1, CD013856. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yu, J.; Wang, R.; Peng, N.; Li, R. Deciphering the effect of phytosterols on Alzheimer’s disease and Parkinson’s disease: The mediating role of lipid profiles. Alzheimer’s Res. Ther. 2024, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Simuni, T.; Chahine, L.M.; Poston, K.; Brumm, M.; Buracchio, T.; Campbell, M.; Chowdhury, S.; Coffey, C.; Concha-Marambio, L.; Dam, T.; et al. A biological definition of neuronal α-synuclein disease: Towards an integrated staging system for research. Lancet Neurol. 2024, 23, 178–190. [Google Scholar] [CrossRef]
- Lin, J.; Ou, R.; Li, C.; Hou, Y.; Zhang, L.; Wei, Q.; Liu, K.; Jiang, Q.; Yang, T.; Xiao, Y.; et al. Evolution and Predictive Role of Plasma Alzheimer’s Disease-related Pathological Biomarkers in Parkinson’s Disease. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2023, 78, 2203–2213. [Google Scholar] [CrossRef]
- Liu, W.-S.; Zhang, Y.-R.; Ge, Y.-J.; Wang, H.-F.; Cheng, W.; Yu, J.-T. Inflammation and Brain Structure in Alzheimer’s Disease and Other Neurodegenerative Disorders: A Mendelian Randomization Study. Mol. Neurobiol. 2024, 61, 1593–1604. [Google Scholar] [CrossRef]
Author | Exercise Group | Group | Description | PD Outcome | Test Interval | Trail A/MoCA Pre-Test Mean (SD) | Pre-Test Group Size (ni1) | Trail A/MoCA Post-Test Mean (SD) | Post-Test Group Size (ni2) |
---|---|---|---|---|---|---|---|---|---|
Abraham et al. (2018) [22] | Dynamic Neuro-Cognitive Imagery | EG | 2 h x day | Trail A | 2 weeks | 30.55 (10.19) | 10 | 27.68 (7.06) | 10 |
DNI | 2 h x day | 27.46 (10.33) | 10 | 28.18 (7.03) | 10 | ||||
Elpidoforou et al. (2022) [23] | Dance | EG | 60 min 2x/wk | MoCA | 8 weeks | 23.92 (1.47) | 16 | 27.15 (0.75) | 13 |
Liu et al. (2022) [24] | EG | 60 min 2x/wk | 8 weeks | 24.7 (3.7) | 14 | 26.9 (2.3) | 14 | ||
CG | 60 min 2x/wk | 26.1 (3.8) | 14 | 26.4 (4.1) | 14 | ||||
Moratelli et al. (2021) [25] | Binary dance | 45 min 2x/wk | MoCA | 12 weeks | 19.5 (5.33) | 18 | 23.66 (4.51) | 18 | |
Quaternary dance | 45 min 2x/wk | 17.3 (6.35) | 13 | 20.84 (6.55) | 13 | ||||
Michels et al. (2018) [26] | EG | 60 min 1x/wk | MoCA | 10 weeks | 27 (2.18) | 9 | 27.44 (2.4) | 9 | |
CG | 60 min 1x/wk | 25.25 (1.5) | 4 | 24.75 (0.96) | 4 | ||||
Frisaldi et al. (2021) [27] | EG | 120 min 3x/wk | MoCA | 5 weeks | 26.08 (3.07) | 19 | 27.11 (2.51) | 19 | |
CG | 60 min 3x/wk | 5 weeks | 25.68 (2.89) | 19 | 26.55 (2.62) | 19 | |||
Lee et al. (2022) [28] | Treadmill Training | EG | 60 min 2x/wk | MoCA | 8 weeks | 26.36 (0.66) | 22 | 26.82 (0.64) | 22 |
CG | 60 min 2x/wk | 26.35 (0.69) | 23 | 27.39 (0.59) | 23 | ||||
Burt et al. (2020) [29] | EG | minimum of 15 min 3x/wk | MoCA | 12 weeks | 25.33 (4.12) | 15 | 25 (2.33) | 15 | |
CG | minimum of 15 min 3x/wk | 26.2 (2.46) | 15 | 25.53 (2.61) | 15 | ||||
San Martín Valenzuela et al. (2020) [30] | EG | 60 min 2x wk | Trial A | 10 weeks | 51.3 (28.1) | 23 | 48.86 (14.91) | 23 | |
CG | 60 min 2x wk | 58.74 (45.46) | 17 | 72.73 (42.65) | 17 | ||||
Hajebrahimi et al. (2022) [31] | Virtual Reality | EG | 60 min 3x/wk | MoCA | 4 weeks | 22.27 (2.19) | 15 | 24.54 (1.5) | 11 |
CG | 60 min 3x/wk | 22.76 (3.39) | 15 | 23 (4.91) | 13 | ||||
Wang et al. (2022) [32] | Wu Qin Xi | 90 min 3x/wk | MoCA | 24 weeks | 26.7 (1.55) | 30 | 27.43 (2.11) | 23 | |
Stretching | 90 min 3x/wk | 27.5 (1.77) | 30 | 27.05 (2.22) | 22 | ||||
Kafle et al. (2021) [33] | Aerobic | EG | 60 min 2x/wk | MoCA | 7 weeks | 26.4 (4.88) | 30 | 29.07 (4.54) | 30 |
CG | 60 min 2x/wk | 26.27 (4.28) | 30 | 27.93 (4.4) | 30 | ||||
Sacheli et al. (2019) [34] | EG | 40–60 min 3x/wk | MoCA | 3 months | 27.94 (1.98) | 20 | 27.53 (1.94) | 20 | |
CG | 40–60 min 3x/wk | 28.23 (1.48) | 15 | 27.54 (2.57) | 15 | ||||
Van der Kolk et al. (2019) [35] | EG | 30–45 min 3x/wk | MoCA | 6 months | 26.3 (2.2) | 65 | 25.7 (0.5) | 65 | |
CG | 30–45 min 3x/wk | 26 (6.3) | 65 | 25.9 (0.5) | 65 | ||||
Song et al. (2018) [36] | EG | min 15 min 3x/wk | MoCA | 12 weeks | 26.4 (2.77) | 31 | 27.3 (2.8) | 28 | |
CG | min 15 min 3x/wk | 26.5 (2.7) | 29 | 26.7 (2.3) | 25 | ||||
Harper et al. (2019) [37] | Cycling | EG | 40 min 3x/wk | MoCA | 1 week | 25.7 (2.8) | 20 | 25 (3.2) | 20 |
CG | N/A | 25.7 (3.2) | 15 | 25.6 (3.3) | 15 | ||||
King et al. (2020) [38] | Agility Boot Camp | Exercise First | 80 min 3x/wk | MoCA | 6 weeks | 26.6 (3) | 25 | 26.5 (3.1) | 23 |
Education First | 240 min /wk | 24.3 (4.2) | 21 | 23.9 (4.3) | 19 | ||||
Silva-Batista et al. (2018) [39] | Resistance Training | RT | 60 min 2x/wk | MoCA | 12 weeks | 21.8 (4.3) | 13 | 22.2 (3) | 13 |
RT w/instability | 60 min 2x/wk | 20.8 (3.2) | 13 | 26.8 (2.4) | 13 | ||||
CG | n/a | 22.7 (5.7) | 13 | 21.6 (6.5) | 13 |
Study | Exercise Type | Group | di | wi | di2wi | diwi | 1.96 x SE | LCI | UCI |
---|---|---|---|---|---|---|---|---|---|
Abraham et al. (2018) [22] | Dynamic Neuro-Cognitive Imagery | EG | 0.32 | 4.94 | 0.51 | 1.58 | 0.88 | 1.20 | 3.21 |
DNI | −0.08 | 5.00 | 0.03 | −0.41 | 0.88 | −0.96 | 3.28 | ||
Elpidoforou et al. (2022) [23] | Dance | EG | −0.13 | 7.16 | 0.11 | −0.91 | 0.73 | −0.86 | 5.72 |
Liu et al. (2022) [24] | EG | −0.09 | 6.99 | 0.05 | −0.60 | 0.74 | −0.83 | 5.54 | |
CG | −0.01 | 7.00 | 0.00 | −0.08 | 0.74 | −0.75 | 5.55 | ||
Moratelli et al. (2021) [25] | Binary dance | −0.19 | 8.96 | 0.33 | −1.73 | 0.65 | −0.85 | 7.67 | |
Quaternary dance | −0.19 | 6.47 | 0.22 | −1.20 | 0.77 | −0.96 | 4.96 | ||
Michels et al. (2018) [26] | EG | −0.02 | 4.50 | 0.00 | −0.07 | 0.92 | −0.94 | 2.69 | |
CG | 0.02 | 2.00 | 0.00 | 0.04 | 1.39 | −1.37 | −0.72 | ||
Frisaldi et al. (2021) [27] | EG | −0.04 | 9.50 | 0.01 | −0.37 | 0.64 | −0.67 | 8.25 | |
CG | −0.03 | 9.50 | 0.01 | −0.32 | 0.64 | −0.67 | 8.25 | ||
Lee et al. (2022) [28] | Treadmill Training | EG | −0.02 | 11.00 | 0.00 | −0.19 | 0.59 | −0.61 | 9.84 |
CG | −0.04 | 11.50 | 0.02 | −0.45 | 0.58 | −0.62 | 10.36 | ||
Burt et al. (2020) [29] | EG | 0.01 | 7.50 | 0.00 | 0.10 | 0.72 | −0.70 | 6.10 | |
CG | 0.03 | 7.50 | 0.01 | 0.19 | 0.72 | −0.69 | 6.10 | ||
San Martín Valenzuela et al. (2020) [30] | EG | 0.11 | 11.48 | 0.15 | 1.30 | 0.58 | −0.46 | 10.35 | |
CG | −0.32 | 8.39 | 0.85 | −2.67 | 0.68 | −0.99 | 7.07 | ||
Hajebrahimi et al. (2022) [31] | Virtual Reality | EG | −0.10 | 6.34 | 0.06 | −0.61 | 0.78 | −0.88 | 4.81 |
CG | −0.01 | 6.96 | 0.00 | −0.07 | 0.74 | −0.75 | 5.51 | ||
Wang et al. (2022) [32] | Wu Qin Xi | −0.03 | 13.02 | 0.01 | −0.35 | 0.54 | −0.57 | 11.95 | |
Stretching | 0.02 | 12.69 | 0.00 | 0.21 | 0.55 | −0.53 | 11.61 | ||
Kafle et al. (2021) [33] | Aerobic | EG | −0.10 | 14.98 | 0.14 | −1.44 | 0.51 | −0.60 | 13.99 |
CG | −0.06 | 14.99 | 0.06 | −0.92 | 0.51 | −0.57 | 14.00 | ||
Sacheli et al. (2019) [34] | EG | 0.01 | 10.00 | 0.00 | 0.15 | 0.62 | −0.61 | 8.78 | |
CG | 0.02 | 7.50 | 0.00 | 0.19 | 0.72 | −0.69 | 6.10 | ||
Van der Kolk et al. (2019) [35] | EG | 0.02 | 32.50 | 0.02 | 0.75 | 0.34 | −0.32 | 31.82 | |
CG | 0.00 | 32.50 | 0.00 | 0.13 | 0.34 | −0.34 | 31.83 | ||
Song et al. (2018) [36] | EG | −0.03 | 14.71 | 0.02 | −0.49 | 0.51 | −0.54 | 13.71 | |
CG | −0.01 | 13.43 | 0.00 | −0.10 | 0.53 | −0.54 | 12.38 | ||
Harper et al. (2019) [37] | Cycling | EG | 0.03 | 10.00 | 0.01 | 0.28 | 0.62 | −0.59 | 8.78 |
CG | 0.00 | 7.50 | 0.00 | 0.03 | 0.72 | −0.71 | 6.10 | ||
King et al. (2020) [38] | Agility Boot Camp | Exercise First | 0.00 | 11.98 | 0.00 | 0.05 | 0.57 | −0.56 | 10.87 |
Education First | 0.02 | 9.97 | 0.00 | 0.17 | 0.62 | −0.60 | 8.76 | ||
Silva-Batista et al. (2018) [39] | Resistance Training | RT | −0.02 | 6.50 | 0.00 | −0.12 | 0.77 | −0.79 | 4.99 |
RT w/instability | −0.25 | 6.45 | 0.41 | −1.63 | 0.77 | −1.02 | 4.94 | ||
CG | 0.05 | 6.50 | 0.02 | 0.32 | 0.77 | −0.72 | 4.99 | ||
∑ | −1.07 | 367.90 | 3.06 | −9.25 | 24.37 | −23.67 | 320.15 | ||
di = −0.03 CId95% = −0.03 ± 0.1 Q = 2.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.O.; Stiles, D.; Brown, K.; Dillon, L.; Shroba, E. Meta-Analysis of Exercise Effects on Cognition in Persons with Parkinson’s Disease. NeuroSci 2025, 6, 46. https://doi.org/10.3390/neurosci6020046
Ahmad SO, Stiles D, Brown K, Dillon L, Shroba E. Meta-Analysis of Exercise Effects on Cognition in Persons with Parkinson’s Disease. NeuroSci. 2025; 6(2):46. https://doi.org/10.3390/neurosci6020046
Chicago/Turabian StyleAhmad, Syed O., Dana Stiles, Kaylee Brown, Leah Dillon, and Eliza Shroba. 2025. "Meta-Analysis of Exercise Effects on Cognition in Persons with Parkinson’s Disease" NeuroSci 6, no. 2: 46. https://doi.org/10.3390/neurosci6020046
APA StyleAhmad, S. O., Stiles, D., Brown, K., Dillon, L., & Shroba, E. (2025). Meta-Analysis of Exercise Effects on Cognition in Persons with Parkinson’s Disease. NeuroSci, 6(2), 46. https://doi.org/10.3390/neurosci6020046