The Case for Octopus Consciousness: Valence
Abstract
:1. Introduction
2. Positive Valence
2.1. Valence and Food Choice
2.2. Valence and Shelter Use in Octopuses
3. Negative Valence
3.1. Valence and Pain
3.2. Valence and Lack of Information
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birch, J.; Schnell, A.K.; Clayton, N.S. Dimensions of animal consciousness. Trends Cogn. Sci. 2020, 24, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P.; Kuchling, F. Valuing what happens: A biogenic approach to valence and (potentially) affect. Phil. Trans. R. Soc. B 2019, 376, 0752. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F. Valence is a basic building block of emotional life. J. Res. Pers. 2006, 40, 35–55. [Google Scholar] [CrossRef]
- Merskey, H. The definition of pain. Eur. Psychiatry 1991, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef]
- Mather, J.A. Octopus consciousness: The role of perceptual richness. NeuroSci 2021, 2, 276–290. [Google Scholar] [CrossRef]
- Mather, J.A. The case for octopus consciousness: Unity. NeuroSci 2021, 2, 405–415. [Google Scholar] [CrossRef]
- Mather, J.A. The case for octopus consciousness: Temporality. NeuroSci 2022, 3, 245–261. [Google Scholar] [CrossRef]
- Stephens, D.W.; Krebs, J.R. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Mela, D.J. Food choice and intake: The human factor. Proc. Nut. Soc. 1999, 58, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Hartwick, E.B.; Thorarinsson, G.; Tulloch, L. Methods of attack by Octopus dofleini (Wulker) on captured bivalve and gastropod prey. Mar. Freshw. Behav. Physiol. 1978, 5, 193–200. [Google Scholar] [CrossRef]
- Smale, M.J.; Buchan, P.R. Biology of Octopus vulgaris off the east coast of South Africa. Mar. Biol. 1981, 63, 1–12. [Google Scholar] [CrossRef]
- Ambrose, R.F. Food preferences, prey availability, and the diet of Octopus bimaculatus Verrill. J. Exp. Mar. Biol. Ecol. 1984, 77, 29–44. [Google Scholar] [CrossRef]
- Mather, J.A. Foraging, feeding, and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool., Lond. 1991, 224, 23–39. [Google Scholar] [CrossRef]
- Vincent, T.L.S.; Scheel, D.; Hough, K.R. Some aspects of diet and foraging behavior of Octopus dofleini (Wulker, 1910) in its northernmost range. PSZN Mar. Ecol. 1998, 19, 13–29. [Google Scholar] [CrossRef]
- Leite, T.S.; Haimovici, M.; Mather, J.A. Octopus insularis (Octopodidae), evidences of a specialized predator and a time-minimizing hunter. Mar. Biol. 2009, 156, 2355–2367. [Google Scholar] [CrossRef] [Green Version]
- Ewing, T.J.; Onthank, K.L.; Cowles, D. The effect of octopus predation on a sponge-scallop association. In Proceedings of the 2008 ASLO Ocean Sciences, Orlando, FL, USA, 2–7 March 2008. [Google Scholar]
- Iribarne, O.O. Prey selection by the small Patagonian octopus Octopus tehuelchus d’Orbigny. J. Exp. Mar. Biol. Ecol. 1991, 148, 271–282. [Google Scholar] [CrossRef]
- Anderson, R.C.; Mather, J.A. The packaging problem: Bivalve prey selection and prey entry techniques of the octopus. J. Comp. Psych. 2007, 121, 300–305. [Google Scholar] [CrossRef]
- Song, M.; Wang, J.; Zheng, X. Prey preference of the common long-armed octopus Octopus minor (Cephalopoda: Octopodidae) on three different species of bivalves. J. Ocean. Limn. 2019, 37, 1595–1603. [Google Scholar] [CrossRef]
- Wodinsky, J. Penetration of the shell and feeding on gastropods by Octopus. Am. Zool. 1969, 9, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- McQuaid, C.D. Feeding behaviour and selection of bivalve prey by Octopus vulgaris Cuvier. J. Exp. Mar. Biol. Ecol. 1994, 177, 187–207. [Google Scholar] [CrossRef]
- Steer, M.A.; Semmens, J.M. Pulling or drilling, does size or species matter? An experimental study of prey handling in Octopus dierythraeus (Norman, 1992). J. Exp. Mar. Biol. Ecol. 2003, 290, 165–178. [Google Scholar] [CrossRef]
- Onthank, K.L.; Cowles, D.L. Prey selection in Octopus rubescens: Possible roles of energy budgeting and prey nutritional composition. Mar. Biol. 2011, 158, 2795–2804. [Google Scholar] [CrossRef]
- Cagnetta, P.; Sublimi, A. Productive performance of the common octopus (Octopus vulgaris Cuvier) when fed on a monodiet. Cah. Options Mediterr. 2000, 47, 331–336. [Google Scholar]
- Portela, E.; Simoes, N.; Rosas, C.; Mascaro, M. Can preference for crabs in juvenile Octopus maya be modified through early experience with alternate prey? Behaviour 2014, 151, 1597–1616. [Google Scholar] [CrossRef]
- Anderson, R.C.; Wood, J.B.; Mather, J.A. Octopus vulgaris in the Caribbean is a specializing generalist. Mar. Ecol. Prog. Ser. 2008, 371, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A.; Leite, T.S.; Batista, A.T. Individual prey choices of octopuses: Are they generalist or specialist? Curr. Zool. 2012, 58, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Scheel, D.; Anderson, R. Variability in the diet specialization of Enteroctopus dofleini (Cephalopoda: Octopodidae) in the Eastern Pacific examined from midden contents. Am. Malacol. Bull. 2012, 30, 267–279. [Google Scholar] [CrossRef]
- Leite, T.S.; Batista, A.T.; Lima, F.S.; Barbosa, J.C.; Mather, J.A. Geographic variability of Octopus insularis diet: From oceanic island to continental populations. Aquat. Biol. 2016, 25, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Scheel, D.; Leite, T.; Mather, J.; Langford, K. Diversity in the diet of the predator Octopus cyanea in the coral reef system of Moorea, French Polynesia. J. Nat. Hist. 2017, 51, 43–44. [Google Scholar] [CrossRef]
- Mather, J.A.; Anderson, R.C. Personalities of octopuses (Octopus rubescens). J. Comp. Psych. 1993, 107, 336–340. [Google Scholar] [CrossRef]
- Pinczon du Sel, G.; Blanc, A.; Daguzon, J. The diet of the cuttlefish Sepia officinalis L. (Mollusca, Cephalopoda) during its life cycle in the northern Bay of Biscay (France). Aquat. Sci. 2000, 61, 167–178. [Google Scholar] [CrossRef]
- Schnell, A.K.; Biehle, M.; Rivera, M.; Clayton, N.S.; Hanlon, R.T. Cuttlefish exert self-control in a delay of gratification task. Proc. R. Soc. B 2021, 288, 3161. [Google Scholar] [CrossRef] [PubMed]
- Mischel, W. Processes in delay of gratification. Adv. Exp. Soc. Psychol. 1974, 7, 249–292. [Google Scholar]
- Billard, P.; Schnell, A.K.; Clayton, N.S.; Jozet-Alves, C. Cuttlefish show flexible and future-dependent foraging cognition. Biol. Lett. 2020, 16, 0743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mather, J.A.; O’Dor, R.K. Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. Bull. Mar. Sci. 1991, 49, 256–269. [Google Scholar]
- Voigt, J.R.; Grehan, A.T. Egg brooding by deep sea octopuses in the north Pacific ocean. Biol. Bull. 2000, 198, 94–100. [Google Scholar] [CrossRef]
- Scheel, D.; Godfrey-Smith, P.; Lawrence, M. Signal use by octopuses in agonistic interactions. Curr. Biol. 2016, 26, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Aronson, R.B. Life history and den ecology of Octopus briareus Robson in a marine lake. J. Exp. Mar. Biol. Ecol. 1986, 95, 37–56. [Google Scholar] [CrossRef]
- O’Brien, D.A.; Taylor, M.L.; Masonjones, H.D.; Boersch-Supan, P.H.; O’Shea, O.R. An experimental assessment of social tolerance and den ecology in a high-density octopus population. Mar. Biol. 2021, 168, 61. [Google Scholar] [CrossRef]
- Mather, J.A. Choice and competition; their effects on occupancy of shell homes by Octopus joubini. Mar. Behav. Physiol. 1982, 8, 285–293. [Google Scholar] [CrossRef]
- Mather, J.A. Factors affecting the spatial distribution of natural populations of Octopus joubini Robson. Anim. Behav. 1982, 30, 1166–1170. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Verriopoulos, G. Den ecology of Octopus vulgaris Cuvier 1797, on soft sediment: Availability and types of shelter. Sci. Mar. 2004, 68, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, R.F. Shelter utilization by the molluscan cephalopod Octopus bimaculatus. Mar. Ecol. Prog. Ser. 1982, 7, 67–73. [Google Scholar] [CrossRef]
- Hartwick, E.B.; Ambrose, R.F.; Robinson, S.M.C. Den utilization and the movement of tagged Octopus dofleini. Mar. Behav. Physiol. 1984, 11, 95–110. [Google Scholar] [CrossRef]
- Anderson, T.J. Habitat selection and shelter use by Octopus tetricus. Mar. Ecol. Prog. Ser. 1997, 150, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Iribarne, O.O. Use of shelter by the small Patagonian octopus, Octopus tehuelchus: Availability, selection and effect on fecundity. Mar. Ecol. Prog. Ser. 1990, 66, 251–258. [Google Scholar] [CrossRef]
- Mereu, M.; Cau, A.; Agus, B.; Cannas, R.; Follesa, M.C.; Pesci, P.; Cuccu, D. Artificial dens as a managerial tool for Octopus vulgaris: Evidence from a Collaborative Fisheries Research Project (central western Mediterranean Sea). Ocean. Coast. Managem. 2018, 165, 428–443. [Google Scholar] [CrossRef]
- Narvarte, M.; Gonzales, R.A.; Storero, L.; Fernandez, M. Effect of competition and egg predation on shelter use by Octopus tehuelchus females. Mar. Ecol. Prog. Ser. 2013, 482, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Freitas, T.B.N.; Leite, T.S.; Bamos, B.; di Cosmo, A.; Proietti, M.C. In an octopus’ garden in the shade: Underwater image analysis of litter use by benthic octopuses. Mar. Poll. Bull. 2022, 175, 113339. [Google Scholar] [CrossRef]
- Heery, E.C.; Olsen, A.Y.; Ferst, B.E.; Sebens, K.P. Urbanization-related distribution patterns and habitat use by the marine mesopredator, giant Pacific octopus (Enteroctopus dofleini). Urban Ecosys. 2018, 21, 707–719. [Google Scholar] [CrossRef]
- Anderson, R.C.; Hughes, P.D.; Mather, J.A.; Steele, C.W. Determination of the diet of Octopus rubescens Berry 1953 (Cephalopoda: Octopodidae) through examination of its beer bottle dens in Puget Sound. Malacologia 1999, 41, 455–460. [Google Scholar]
- Finn, J.K.; Tregenza, T.; Norman, M.D. Defensive tool use in a coconut-carrying octopus. Curr. Biol. 2009, 19, R1069–R1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef] [Green Version]
- D’Ambra, I.; Lauritano, C. A review of toxins from Cnidaria. Mar. Drugs 2020, 18, 507. [Google Scholar] [CrossRef]
- Maclean, R. Gastropod shells: A dynamic resource that helps shape benthic community structure. J. Exp. Mar. Biol. Ecol 1983, 69, 151–174. [Google Scholar] [CrossRef]
- Boycott, B.B. Learning in Octopus vulgaris and other cephalopods. Proc. Staz. Zool. Nap. 1954, 25, 67–93. [Google Scholar]
- Crook, R.J.; Dickson, K.; Hanlon, R.T.; Walters, E.T. Nociceptive sensitization reduces predation risk. Curr. Biol. 2014, 24, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.A. Vigilance and antipredator responses of Caribbean reef squid. Mar. Freshw. Beh. Physiol. 2010, 43, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Alupay, J.S.; Hadjisolomou, S.P.; Crook, R.J. Arm injury produces long-term behavioral and neural hypersensitivity in octopus. Neurosci. Lett. 2014, 558, 137–142. [Google Scholar] [CrossRef]
- Crook, R.J. Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience 2021, 24, 102229. [Google Scholar] [CrossRef]
- Sampedro-Piquero, P.; Begaga, A.; Arias, J.L. Increase of glucocorticoid receptor expression after environmental enrichment: Relations to spatial memory, exploration and anxiety related behaviors. Physiol. Behav. 2014, 129, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.N. Intrinsic exploration in animals: Motives and measurement. Beh. Proc. 1997, 41, 213–226. [Google Scholar] [CrossRef]
- Smith, J.D.; Shields, W.E.; Washburn, D.A. The comparative psychology of uncertainty monitoring and metacognition. Behav. Brain Sci. 2003, 26, 217–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torigoe, T. Comparison of object manipulation among 74 species of non-human primates. Primates 1985, 26, 182–194. [Google Scholar] [CrossRef]
- Pisula, W. Play and exploration in animal—A comparative analysis. Polish Psychol. Bull. 2008, 39, 104–107. [Google Scholar] [CrossRef]
- Bar-Hen-Schweiger, M.; Henik, A. The transition of object to mental manipulation: Beyond a species-specific view of intelligence. Anim. Cogn. 2020, 23, 691–701. [Google Scholar] [CrossRef]
- Seed, A.; Byrne, R. Animal tool use. Curr. Biol. 2010, 20, R1032–R1039. [Google Scholar] [CrossRef] [Green Version]
- Beck, B.B. Animal Tool Use Behavior: The Use and Manufacture of Tools by Animals; JHU Press: Baltimore, MD, USA, 1980. [Google Scholar]
- Maravita, A.; Iriki, A. Tools for the body (schema). Trends Cogn. Sci. 2004, 8, 79–86. [Google Scholar] [CrossRef]
- Mann, J.; Patterson, E.M. Tool use by aquatic animals. Phil. Trans. R. Soc. B 2013, 368, 424. [Google Scholar] [CrossRef]
- Mather, J.A. “Home” choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): Specialized intelligence and tool use? J. Zool. Lond. 1994, 233, 359–368. [Google Scholar] [CrossRef]
- Mather, J.A. Sand digging in Sepia officinalis: Assessment of a cephalopod mollusc’s ‘fixed’ behavior pattern. J. Comp. Psych. 1986, 100, 315–320. [Google Scholar] [CrossRef]
- Drerup, C.; Sykes, A.; Cooke, G. Behavioural aspects of the spotty bobtail squid Euprymna parva (Cephalopoda: Sepioloidae). J. Exp. Mar. Biol. Ecol. 2020, 530, 151442. [Google Scholar] [CrossRef]
- Mather, J.A. Interactions of juvenile Octopus vulgaris with scavenging and territorial fishes. Mar. Freshw. Behav. Phyiol. 1992, 19, 175–182. [Google Scholar] [CrossRef]
- Mather, J.A.; Anderson, R.C. Exploration, play and habituation in octopuses (Octopus dofleini). J. Comp. Psych. 1999, 107, 333–338. [Google Scholar] [CrossRef]
- Graham, K.L.; Burghardt, G.M. Current perspectives on the biological study of play: Signs of progress. Quart. Rev. Biol. 2010, 85, 393–418. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, N.; Auersperg, A.M.I. Object play in parrots and corvids. Curr. Opin. Behav. Sci. 2017, 16, 119–125. [Google Scholar] [CrossRef]
- Kuba, M.; Byrne, R.A.; Meisel, D.V.; Griebel, U.; Mather, J.A. When do octopuses play? Effect of repeated testing, object type, age, and food deprivation on object play in Octopus vulgaris. J. Comp. Psychol. 2006, 120, 184–190. [Google Scholar]
- Kimble, J.M.; Leharneau, M.; Garriga, J.; Raposo, E.P.; Bartumeus, F. Bumblebees learn foraging routes through exploration-exploitation cycle. J Roy. Soc. Interface 2019, 16, 0103. [Google Scholar]
- Thompson, S.M.; Berkowitz, L.E.; Clark, B.J. Behavioral and neural subsystems of rodent exploration. Learn. Motiv. 2018, 61, 3–15. [Google Scholar] [CrossRef]
- Jackson, B.J.; Fatima, G.L.; Oh, S.; Gire, D.H. Many paths to the same goal: Balancing exploration and exploitation during probabilistic route planning. eNeuro 2020, 7, 0536-19. [Google Scholar] [CrossRef]
- Teichrob, J.A.; Vining, A.Q. Navigation strategies in three nocturnal lemur species: Diet predicts heuristic use and degree of exploratory behavior. Anim. Cogn. 2019, 22, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Boal, J.G.; Dunham, A.W.; Williams, K.T.; Hanlon, R.T. Experiential evidence for spatial learning in octopuses (Octopus bimaculoides). J. Comp. Psychol. 2000, 114, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Neisser, U. Cognition and Reality; Freeman: Dallas, TX, USA, 1976. [Google Scholar]
- Ginsberg, S.; Jablonka, E. The Evolution of the Sensitive soul: Learning and the Origin of Consciousness; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mather, J. The Case for Octopus Consciousness: Valence. NeuroSci 2022, 3, 656-666. https://doi.org/10.3390/neurosci3040047
Mather J. The Case for Octopus Consciousness: Valence. NeuroSci. 2022; 3(4):656-666. https://doi.org/10.3390/neurosci3040047
Chicago/Turabian StyleMather, Jennifer. 2022. "The Case for Octopus Consciousness: Valence" NeuroSci 3, no. 4: 656-666. https://doi.org/10.3390/neurosci3040047