Global Perspectives on Riparian Ecosystem Restoration: A Systematic Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Items
- Evolution of scientific production: publication counts and annual growth [34].
- Geographic distribution and international collaboration: production at the country level and co-authorship networks [35].
- Keyword analysis: high-frequency descriptors to define thematic lines [34].
- Research trends: temporal mapping of emerging topics and methodological approaches [36].
2.2. Synthesis Methods
- Bibliometric analysis: Conducted in R (Bibliometrix) to examine production, collaboration, impact, and thematic structures [32].
- Qualitative content analysis: Applied to the 322 articles to classify and describe the main perspectives in riparian ecosystem restoration (Table S3). The classification framework integrates established models and guidelines on ecological restoration, ecosystem services, community participation, and riparian management, selected for their international relevance and operational clarity.
2.3. Risk of Bias/Quality Assessment
3. Results
3.1. Trends in Scientific Production and Authorship
3.2. Temporal Dynamics of Scientific Production
3.3. Cumulative Trajectory and Projections
3.4. Geographic Patterns and Collaboration Networks
3.5. Patterns of Authorship and Most Influential Contributions
3.6. Thematic Trends and Keyword Analysis
3.7. Main Thematic Lines and Emerging Topics
3.8. Restoration Approaches, Community Participation and Issues Addressed
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
| TC | Total Citations |
| IUCN | International Union for Conservation of Nature |
References
- Corvalán, C.; Hales, S.; McMichael, A.J.; Millennium Ecosystem Assessment; World Health Organization. Ecosystems and Human Well-Being: Health Synthesis; World Health Organization: Geneva, Switzerland, 2005; pp. 1–137. Available online: https://www.loc.gov/item/2023691852/ (accessed on 20 August 2025).
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. Process-based principles for restoring river ecosystems. J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Grizzetti, B.; Liquete, C.; Antunes, P.; Carvalho, L.; Geamănă, N.; Giucă, R.; Leone, M.; McConnell, S.; Preda, E.; Santos, R.; et al. Ecosystem services for water policy: Insights across Europe. Environ. Sci. Policy 2016, 66, 179–190. [Google Scholar] [CrossRef]
- Beechie, T.J.; Stefankiv, O.; Bond, M.; Pollock, M. Modeling riparian species occurrence from historical vegetation and hydrologic regime data. Ecosphere 2021, 12, e03525. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- du Plessis, N.S.; Rebelo, A.J.; Richardson, D.M.; Esler, K.J. Guiding restoration of riparian ecosystems degraded by plant invasions: Insights from a complex social-ecological system in the Global South. Ambio 2022, 51, 1552–1568. [Google Scholar] [CrossRef]
- Castellano, C.; Bruno, D.; Comín, F.A.; Rey Benayas, J.M.; Masip, A.; Jiménez, J.J. Environmental drivers for riparian restoration success and ecosystem services supply in Mediterranean agricultural landscapes. Agric. Ecosyst. Environ. 2022, 337, 108048. [Google Scholar] [CrossRef]
- Ramos, L.; Negreiros, D.; Goulart, F.F.; Figueiredo, J.C.G.; Kenedy-Siqueira, W.; Toma, T.S.P.; Justino, W.S.; Maia, R.A.; Oliveira, J.T.; Oki, Y.; et al. Dissimilar forests along the Rio Doce watershed call for multiple restoration references to avoid biotic homogenization. Sci. Total Environ. 2024, 930, 172720. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Sun, N.; Baerwalde, M.J.; Hawkins, B.L.; Yan, H. Mechanistic simulations suggest riparian restoration can partly counteract climate impacts to juvenile salmon. J. Am. Water Resour. Assoc. 2022, 58, 525–546. [Google Scholar] [CrossRef]
- Mohan, M.; Chacko, A.; Rameshan, M.; Gopikrishna, V.G.; Kannan, V.M.; Vishnu, N.G.; Sasi, S.A.; Baiju, K.R. Restoring riparian ecosystems during the UN-Decade on Ecosystem Restoration: A global perspective. Anthr. Sci. 2022, 1, 42–61. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, B.; Shi, X.; Tao, Y.; Wang, Z.; Wang, S.; Ye, B. The relationship between riparian soil nutrients and water quality in inlet sections of lakes: A case study of the Kherlen River. Sustainability 2025, 17, 1367. [Google Scholar] [CrossRef]
- Shafroth, P.B.; Stromberg, J.C.; Patten, D.T. Woody riparian vegetation response to different alluvial water table regimes. West. N. Am. Nat. 2000, 60, 66–76. [Google Scholar]
- Kauffman, J.B.; Beschta, R.L.; Otting, N.; Lytjen, D. An ecological perspective of riparian and stream restoration in the western United States. Fisheries 1997, 22, 12–24. [Google Scholar] [CrossRef]
- Boudell, J.A.; Dixon, M.D.; Rood, S.B.; Stromberg, J.C. Restoring functional riparian ecosystems: Concepts and applications. Ecohydrology 2015, 8, 791–806. [Google Scholar] [CrossRef]
- Krall, M.; Roni, P. Effects of livestock exclusion on stream habitat and aquatic biota: A review and recommendations for implementation and monitoring. N. Am. J. Fish. Manag. 2023, 43, 287–305. [Google Scholar] [CrossRef]
- Cubley, E.S.; Richer, E.E.; Baker, D.W.; Lamson, C.G.; Hardee, T.L.; Bledsoe, B.P.; Kulchawik, P.L. Restoration of riparian vegetation on a mountain river degraded by historical mining and grazing. River Res. Appl. 2021, 38, 1841–1855. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Czapka, S.J.; Yerkes, T. Riparian forest restoration: Increasing success by reducing plant competition and herbivory. Restor. Ecol. 2002, 10, 392–400. [Google Scholar] [CrossRef]
- Andrews, D.M.; Barton, C.D.; Czapka, S.J.; Kolka, R.K.; Sweeney, B.W. Influence of tree shelters on seedling success in an afforested riparian zone. New For. 2010, 39, 157–167. [Google Scholar] [CrossRef]
- De Mello, K.; Randhir, T.O.; Valente, R.A.; Vettorazzi, C.A. Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecol. Eng. 2017, 108, 514–524. [Google Scholar] [CrossRef]
- Narendra, B.H.; Siregar, C.A.; Dharmawan, I.W.S.; Sukmana, A.; Pratiwi, I.B.; Pramono, I.B.; Basuki, T.M.; Nugroho, H.Y.S.H.; Supangat, A.B.; Purwanto, O.; et al. A review on sustainability of watershed management in Indonesia. Sustainability 2021, 13, 11125. [Google Scholar] [CrossRef]
- Dybala, K.E.; Clipperton, N.; Gardali, T.; Golet, G.H.; Kelsey, R.; Lorenzato, S.; Melcer, R.; Seavy, N.E.; Silveira, J.G.; Yarris, G.S. Population and habitat objectives for avian conservation in California’s Central Valley riparian ecosystems. San Franc. Estuary Watershed Sci. 2017, 15, 1. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Beechie, T.J.; Baker, S.E.; Hall, J.E.; Barnas, K.A. Regional patterns of riparian characteristics in the western USA: Implications for restoration. Landsc. Urban Plan. 2006, 78, 86–100. [Google Scholar]
- Lozanovska, I.; Ferreira, M.T.; Aguiar, F.C. Functional diversity assessment in riparian forests—Multiple approaches and trends: A review. Ecol. Indic. 2018, 95, 781–793. [Google Scholar] [CrossRef]
- Nilsson, C.; Jansson, R.; Malmqvist, B.; Naiman, R.J. Restoring riverine landscapes: The challenge of identifying priorities, reference states, and techniques. Ecol. Soc. 2007, 12, 16. [Google Scholar] [CrossRef]
- Mondal, S.; Patel, P.P. Mapping, measuring and modelling common fluvial hazards in riparian zones: A brief review of relevant concepts and methods. In Geospatial Technology for Environmental Hazards; Springer: Cham, Switzerland, 2021; pp. 353–389. [Google Scholar] [CrossRef]
- Dwire, K.A.; Mellmann-Brown, S.; Gurrieri, J.T. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA. Clim. Serv. 2018, 10, 44–52. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote sensing evaluation of ecological restoration engineering effect: A case study of the Yongding River Watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Beechie, T.J.; Sear, D.A.; Olden, J.D.; Pess, G.R.; Buffington, J.M.; Moir, H.; Roni, P.; Pollock, M.M. Process-based principles for restoring river ecosystems. BioScience 2010, 60, 209–222. [Google Scholar] [CrossRef]
- Sanders, J.M.; Jackson, C.R.; Welch-Devine, M. Mowers versus growers: Riparian buffer management in working landscapes. J. Am. Water Resour. Assoc. 2023, 59, 563–578. [Google Scholar] [CrossRef]
- Rohde, S.; Hostmann, M.; Peter, A.; Ewald, K.C. Room for rivers: An integrative search strategy for floodplain restoration. Landsc. Urban Plan. 2006, 78, 50–70. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, L.; Li, C. Trends and Hotspots in Riparian Restoration Research: A Global Bibliometric Analysis during 1990–2022. Forests 2024, 14, 2205. [Google Scholar] [CrossRef]
- Goyal, K.; Kumar, S. Financial literacy: A systematic review and bibliometric analysis. Int. J. Consum. Stud. 2021, 45, 80–105. [Google Scholar] [CrossRef]
- Malapane, O.L.; Musakwa, W.; Chanza, N.; Radinger-Peer, V. Bibliometric analysis and systematic review of indigenous knowledge from a comparative African perspective: 1990–2020. Land 2022, 11, 1167. [Google Scholar] [CrossRef]
- Nyulas, J.; Dezsi, Ș.; Niță, A.; Toma, R.-A.; Lazăr, A.-M. Trends and future directions in analysing attractiveness of geoparks using an automated merging method of multiple databases—R-based bibliometric analysis. Land 2024, 13, 1627. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Bettencourt, L.M.; Kaiser, D.I.; Kaur, J. Scientific discovery and topological transitions in collaboration networks. J. Informetr. 2009, 3, 210–221. [Google Scholar] [CrossRef]
- Small, H.; Upham, S.P. Citation structure of an emerging research area on the verge of application. Scientometrics 2009, 79, 365–375. [Google Scholar] [CrossRef]
- Aria, M.; Misuraca, M.; Spano, M. Mapping the evolution of social research and data science on 30 years of Social Indicators Research. Soc. Indic. Res. 2020, 149, 803–831. [Google Scholar] [CrossRef]
- Wang, Q. A bibliometric model for identifying emerging research topics. J. Assoc. Inf. Sci. Technol. 2018, 69, 290–304. [Google Scholar] [CrossRef]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. Am. Benthol. Soc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- Roni, P.; Beechie, T.J.; Bilby, R.E.; Leonetti, F.E.; Pollock, M.M.; Pess, G.R. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. N. Am. J. Fish. Manag. 2002, 22, 1–20. [Google Scholar] [CrossRef]
- Reeves, G.H.; Benda, L.E.; Burnett, K.M.; Bisson, P.A.; Sedell, J.R. A disturbance-based ecosystem approach to maintaining and restoring freshwater habitats of evolutionarily significant units of anadromous salmonids in the Pacific Northwest. Am. Fish. Soc. Symp. 1995, 17, 334–349. [Google Scholar]
- International Union for Conservation of Nature (IUCN). Restoration Intervention Typology for Terrestrial Ecosystems; IUCN: Gland, Switzerland, 2021; Available online: https://iucn.org/sites/default/files/content/documents/2021/iucn_restoration_intervention_typology.pdf (accessed on 25 August 2025).
- Reed, M.S.; Vella, S.; Challies, E.; de Vente, J.; Frewer, L.; Hohenwallner-Ries, D.; Huber, T.; Neumann, R.K.; Oughton, E.A.; Sidoli del Ceno, J.; et al. A Theory of Participation: What Makes Stakeholder and Public Engagement in Environmental Management Work? Restor. Ecol. 2017, 25, 745–756. [Google Scholar] [CrossRef]
- Fenten, T.; Dieperink, C. Governance conditions for a successful restoration of riverine ecosystems, lessons from the Rhine River Basin. Water 2024, 16, 2983. [Google Scholar] [CrossRef]
- Roni, P.; Hanson, K.; Beechie, T.J.; Pess, G.R.; Pollock, M.M.; Bartley, D.M. Habitat Rehabilitation for Inland Fisheries: Global Review of Effectiveness and Guidance for Rehabilitation of Freshwater Ecosystems; FAO Fisheries Technical Paper 484; FAO: Rome, Italy, 2005. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Allan, D.J.; Erickson, D.; Fay, J. The influence of catchment land use on stream integrity across multiple spatial scales. Freshw. Biol. 1997, 37, 149–161. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing U.S. river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Newbold, J.D. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. J. Am. Water Resour. Assoc. 2014, 50, 560–584. [Google Scholar] [CrossRef]
- Lee, P.; Smyth, C.; Boutin, S. Quantitative review of riparian buffer width guidelines from Canada and the United States. J. Environ. Manag. 2004, 70, 165–180. [Google Scholar] [CrossRef]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef]
- Vidon, P.G.F.; Hill, A.R. Landscape controls on the hydrology of stream riparian zones. J. Hydrol. 2004, 292, 210–228. [Google Scholar] [CrossRef]
- Hill, A.R. Nitrate removal in stream riparian zones. J. Environ. Qual. 1996, 25, 743–755. [Google Scholar] [CrossRef]
- Sabater, S.; Butturini, A.; Clement, J.C.; Burt, T.; Dowrick, D.; Hefting, M.; Matre, V.; Pinay, G.; Postolache, C.; Rzepecki, M.; et al. Nitrogen removal by riparian buffers along a European climatic gradient: Patterns and factors of variation. Ecosystems 2003, 6, 20–30. [Google Scholar] [CrossRef]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; et al. Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- Wohl, E.; Bledsoe, B.P.; Jacobson, R.B.; Poff, N.L.; Rathburn, S.L.; Walters, D.M.; Wilcox, A.C. The natural sediment regime in rivers: Broadening the foundation for ecosystem management. BioScience 2015, 65, 358–371. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell Grant, E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J. N. Am. Benthol. Soc. 2011, 30, 310–327. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. River restoration: The fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Loheide, S.P., II; Gorelick, S.M. Riparian hydroecology: A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Water Resour. Res. 2007, 43, W07414. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.-M.; Muller, E.; Décamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Merritt, D.M.; Scott, M.L.; LeRoy Poff, N.; Auble, G.T.; Lytle, D.A. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation–flow response guilds. Freshw. Biol. 2010, 55, 206–225. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef]
- Petts, G.E.; Gurnell, A.M. Dams and geomorphology: Research progress and future directions. Geomorphology 2005, 71, 27–47. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Blanton, P.; Marcus, W.A. Railroads, roads and lateral disconnection in the river landscapes of the continental United States. Geomorphology 2009, 112, 212–227. [Google Scholar] [CrossRef]
- Dodds, W.K.; Oakes, R.M. Headwater influences on downstream water quality. Environ. Manag. 2008, 41, 367–377. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K.; Cullum, C.; Tadaki, M.; Huang, H.Q.; Blue, B. Reading the landscape: Integrating the theory and practice of geomorphology to develop place-based understandings of river systems. Prog. Phys. Geogr. 2013, 37, 601–621. [Google Scholar] [CrossRef]
- Fryirs, K.; Brierley, G.J. Naturalness and Place in River Rehabilitation. Ecol. Soc. 2009, 14, 20. [Google Scholar] [CrossRef]
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An ecosystem perspective of riparian zones. BioScience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Roni, P.; Hanson, K.; Beechie, T. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. N. Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bunn, S.E.; Poff, N.L.; Naiman, R.J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef]
- Richter, B.D.; Warner, A.T.; Meyer, J.L.; Lutz, K. A Collaborative and Adaptive Process for Developing Environmental Flow Recommendations. River Res. Appl. 2006, 22, 297–318. [Google Scholar] [CrossRef]
- Tockner, K.; Malard, F.; Ward, J.V. An extension of the flood pulse concept. Hydrol. Process. 2000, 14, 2861–2883. [Google Scholar] [CrossRef]
- Collins, B.D.; Montgomery, D.R.; Sheikh, A.J. Reconstructing the historical riverine landscape of the Puget Lowland. In Restoring Puget Sound Rivers; University of Washington Press: Seattle, WA, USA, 2003; 512p. [Google Scholar]
- Richardson, J.S.; Béraud, S. Effects of riparian forest harvest on streams: A meta-analysis. J. Appl. Ecol. 2014, 51, 1712–1721. [Google Scholar] [CrossRef]
- Kantharajan, G.; Pathak, A.K.; Sarkar, U.K.; Singh, R.; Kumar, R.; Shikha; Acharya, A.; Kumawat, T. Assessing deep pools and water spread dynamics in semi-arid Banas River, India: A geospatial approach for conservation and sustainable management. Environ. Sci. Pollut. Res. 2024, 31, 55736–55755. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H. The ecology of interfaces: Riparian zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regul. Rivers Res. Manag. 1999, 15, 125–139. [Google Scholar] [CrossRef]
- Seavy, N.E.; Gardali, T.; Golet, G.H.; Griggs, F.T.; Howell, C.A.; Kelsey, R.; Small, S.L.; Viers, J.H.; Weigand, J.F. Why climate change makes riparian restoration more important than ever: Recommendations for practice and research. Ecol. Restor. 2009, 27, 330–338. [Google Scholar] [CrossRef]
- Postel, S.; Richter, B.D. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Naz, F.; Arif, M.; Xue, T.; Li, C. Artificially remediated plants impact soil physiochemical properties along the riparian zones of the Three Gorges Dam in China. Front. For. Glob. Change 2024, 7, 1301086. [Google Scholar] [CrossRef]
- Morelli, G.; Ciani, F.; Cocozza, C.; Costagliola, P.; Fagotti, C.; Friani, R.; Lattanzi, P.; Manca, R.; Monnanni, A.; Nannoni, A.; et al. Riparian trees in mercury-contaminated riverbanks: An important resource for sustainable remediation management. Environ. Res. 2024, 257, 119373. [Google Scholar] [CrossRef]
- Wenger, S.J. A Review of the Scientific Literature on Riparian Buffer Width, Extent and Vegetation; Institute of Ecology, Office of Public Service & Outreach, University of Georgia: Athens, GA, USA, 1999. [Google Scholar]
- Broadmeadow, S.; Nisbet, T.R. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
- Lind, L.; Maher Hasselquist, E.; Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manag. 2019, 249, 109391. [Google Scholar] [CrossRef]
- Lowrance, R.; Todd, R.; Fail, J.; Hendrickson, O.; Leonard, R.; Asmussen, L. Riparian forests as nutrient filters in agricultural watersheds. BioScience 1984, 34, 374–377. [Google Scholar] [CrossRef]
- Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Hefting, M.; Clément, J.C.; Dowrick, D.; Cosandey, A.C.; Bernal, S.; Cimpian, C.; Tatur, A.; Burt, T.P.; Pinay, G. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 2004, 67, 113–134. [Google Scholar] [CrossRef]
- Burt, T.P.; Pinay, G.; Matheson, F.E.; Haycock, N.E.; Butturini, A.; Clement, J.C.; Danielescu, S.; Dowrick, D.J.; Hefting, M.M.; Hillbricht-Ilkowska, A.; et al. Water Table Fluctuations in the Riparian Zone: Comparative Results from a Pan-European Experiment. J. Hydrol. 2002, 265, 129–148. [Google Scholar] [CrossRef]
- Jordan, T.E.; Weller, D.E.; Correll, D.L. Denitrification in surface soils of a riparian forest: Effects of water, nitrate and sucrose additions. Soil Biol. Biochem. 1998, 30, 833–843. [Google Scholar] [CrossRef]
- Weller, D.E.; Jordan, T.E.; Correll, D.L. Heuristic models for material discharge from landscapes with riparian buffers. Ecol. Appl. 1998, 8, 1156–1169. [Google Scholar] [CrossRef]
- Groffman, P.M.; Gold, A.J.; Simmons, R.C. Nitrate dynamics in riparian forests: Microbial studies. J. Environ. Qual. 1992, 21, 666–671. [Google Scholar] [CrossRef]
- Dosskey, M.G. Toward quantifying water pollution abatement in response to installing buffers on crop land. Environ. Manag. 2001, 28, 577–598. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.B.; Gilliam, J.W. Sediment and chemical load reduction by grass and riparian filters. Soil Sci. Soc. Am. J. 1996, 60, 246–251. [Google Scholar] [CrossRef]
- Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv. 2003, 58, 1–8. [Google Scholar] [CrossRef]
- Wenger, S.J.; Fowler, L. Protecting Stream and River Corridors: Creating Effective Local Riparian Buffer Ordinances; Institute of Ecology, Office of Public Service & Outreach, University of Georgia: Athens, GA, USA, 2000. [Google Scholar]
- Mander, Ü.; Hayakawa, Y.; Kuusemets, V. Purification processes, ecological functions, planning and design of riparian buffer zones in agricultural watersheds. Ecol. Eng. 2005, 24, 421–432. [Google Scholar] [CrossRef]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 2002, 52, 483–498. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot spots and hot moments in riparian zones: Potential for improved water quality management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Gu, J.-Y.; Lee, J.-W.; Lee, S.-W.; Park, Y.; Park, S.-R. Enhancing stream ecosystems through riparian vegetation management. Land 2025, 14, 1248. [Google Scholar] [CrossRef]
- Michael-Bitton, G.; Zemah-Shamir, S.; Portnov, B. Managing stream restoration: Framing and assessing the stream ecosystem services and biodiversity index (SESBI). J. Environ. Manag. 2025, 388, 125938. [Google Scholar] [CrossRef] [PubMed]
- Shore, W.; Jaleta, M.; Zeleke, F.; Beyene, F. Exploring residents’ preferences for riparian restoration attributes in Lake Dambal watershed, Ethiopia: A choice experiment approach. J. Environ. Manag. 2025, 383, 125447. [Google Scholar] [CrossRef]
- Verdonschot, P.; Verdonschot, R. The role of stream restoration in enhancing ecosystem services. Hydrobiologia 2022, 849, 2895–2910. [Google Scholar] [CrossRef]
- Du, N.; Zhao, J.; Qin, K.; Wang, H.; Yang, Y.; Yang, F. Flooding and land use drive variation in phylogenetic structure and taxonomic diversity of plant communities in urban riparian zones of a regulated river. Urban For. Urban Green. 2025, 107, 128741. [Google Scholar] [CrossRef]




| Paper | Total Citations | TCs per Year | Normalized TCs |
|---|---|---|---|
| Stream restoration in urban catchments through redesigning stormwater systems: looking to the catchment to save the stream [42]. | 503 | 23.95 | 7.49 |
| A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds [43]. | 470 | 19.58 | 3.72 |
| The role of riparian vegetation in protecting and improving chemical water quality in streams [2]. | 422 | 26.38 | 11.20 |
| A disturbance-based ecosystem approach to maintaining and restoring freshwater habitats of evolutionarily significant units of anadromous salmonids in the Pacific Northwest [44]. | 304 | 9.81 | 1.00 |
| An ecological perspective of riparian and stream restoration in the western United States [13]. | 290 | 10.00 | 4.64 |
| General Category | Subcategory | Records | Percentage Relative to the Total Evaluated (%) |
|---|---|---|---|
| Ecosystem Services [1] | Provision | 9 | 3 |
| Regulation | 280 | 87 | |
| Cultural | 35 | 11 | |
| Support | 197 | 61 | |
| Ecological Restoration [45] | Natural Regeneration | 103 | 32 |
| Assisted Regeneration | 97 | 30 | |
| Artificial Regeneration | 54 | 17 | |
| Area Protection | 150 | 47 | |
| Invasive Species Control | 22 | 7 | |
| Silviculture and Agroforestry | 22 | 7 | |
| Community Participation [46] | Top-down Unidirectional | 73 | 23 |
| Top-down Deliberative | 58 | 18 | |
| Bottom-up Unidirectional | 2 | 1 | |
| Bottom-up Deliberative | 7 | 2 | |
| Riparian Zone Issues [42,43,47] | Ecological | 290 | 90 |
| Hydrological | 179 | 56 | |
| Social and Economic | 88 | 27 | |
| Institutional | 248 | 77 | |
| Technical and Scientific | 287 | 89 | |
| Natural Hazards | 10 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becoche Mosquera, J.M.; Macías Pinto, D.J. Global Perspectives on Riparian Ecosystem Restoration: A Systematic Literature Review. World 2025, 6, 164. https://doi.org/10.3390/world6040164
Becoche Mosquera JM, Macías Pinto DJ. Global Perspectives on Riparian Ecosystem Restoration: A Systematic Literature Review. World. 2025; 6(4):164. https://doi.org/10.3390/world6040164
Chicago/Turabian StyleBecoche Mosquera, Jorge Mario, and Diego Jesús Macías Pinto. 2025. "Global Perspectives on Riparian Ecosystem Restoration: A Systematic Literature Review" World 6, no. 4: 164. https://doi.org/10.3390/world6040164
APA StyleBecoche Mosquera, J. M., & Macías Pinto, D. J. (2025). Global Perspectives on Riparian Ecosystem Restoration: A Systematic Literature Review. World, 6(4), 164. https://doi.org/10.3390/world6040164

