Divergent Paths of SME Digitalization: A Latent Class Approach to Regional Modernization in the European Union
Abstract
1. Introduction
2. Theoretical Framework and Literature Review
2.1. Theoretical Framework
2.2. Literature Review
- What are the hidden digital adoption profiles of EU SMEs, and how do they vary in terms of technological scope and intensity?
- How do firm-level and country-level digital readiness levels (e.g., DESI) predict class membership, and what are the determinants of these factors?
- To what extent do spatial and institutional contexts, i.e., urbanization and border proximity, shape the digital transformation paths of SMEs across regions?
3. Data and Analytical Strategy
3.1. Data Sources
3.2. Methodology
3.3. Variables
- Artificial Intelligence (AI), the use of machine learning or pattern recognition systems;
- Cloud computing, the adoption of remote data storage and processing capabilities;
- Robotics, the integration of automated physical systems in production or logistics;
- Smart devices, the use of connected sensors and IoT (Internet of Things)-enabled technologies;
- Big data analytics, the application of data mining and predictive analytics;
- High-speed infrastructure, the availability of fast, reliable internet connectivity;
- Blockchain, the use of distributed ledger technologies for secure digital transactions.
3.4. Covariates
4. Results: Latent Class Construction and Regional Distribution of Digital Modernization Patterns
4.1. Latent Classes Construction
4.2. To What Extent Do Spatial and Institutional Contexts, I.E., Urbanization and Border Proximity, Shape the Digital Change Paths of SMEs in Regions?
4.3. How Do Firm-Level and Country-Level Digital Readiness (According to DESI) Predict Class Membership, and What Are the Determinants of These Factors?
4.4. What Are the Hidden Digital Adoption Profiles of EU SMEs, and How Do They Vary In Terms of Technological Scope and Intensity?
5. Summary and Discussion
5.1. Summary
5.2. Discussion
6. Conclusions and Limitations
6.1. Conclusions
6.2. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
CATI | Computer-Assisted Telephone Interviewing |
CI | Confidence Interval/Credible Interval |
DESI | Digital Economy and Society Index |
DT | Digital Technology |
EU | European Union |
GVC | Global Value Chains |
H | Hypothesis |
ICC | Intraclass Correlation Coefficient |
IoT | Internet of Things |
LCA | Latent Class Analysis |
OECD | Organization for Economic Co-operation and Development |
RIS | Regional Innovation Systems |
SMEs | Small and Medium-sized Enterprises |
References
- European Commission. Shaping Europe’s Digital Future COM (2020) 67 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. 2030 Digital Compass: The European Way for the Digital Decade, CM (2021) 118 Final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Malecki, E.J. Digital Development in Rural Areas: Potentials and Pitfalls. J. Rural Stud. 2003, 19, 201–214. [Google Scholar] [CrossRef]
- Van Dijk, J.A.G.M. The Deepening Divide: Inequality in the Information Society; Sage Publications: Thousand Oaks, CA, USA, 2005. [Google Scholar] [CrossRef]
- Friedmann, J. Regional Development Policy: A Case Study of Venezuela; MIT Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Krugman, P. Geography and Trade; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Camagni, R. Regional Competitiveness: Towards a Concept of Territorial Capital. In Handbook of Regional Growth and Development Theories; Capello, R., Nijkamp, P., Eds.; Edward Elgar: Cheltenham, UK, 2009; pp. 118–132. [Google Scholar]
- Dijkstra, L.; Poelman, H.; Rodríguez-Pose, A. The Geography of EU Discontent. Reg. Stud. 2021, 55, 126–142. [Google Scholar] [CrossRef]
- Philip, L.; Cottrill, C.; Farrington, J.; Williams, F.; Ashmore, F. The Digital Divide: Patterns, Policy and Scenarios for Connecting the ‘Final Few’ in Rural Communities across Great Britain. J. Rural Stud. 2017, 54, 386–398. [Google Scholar] [CrossRef]
- Grimes, S. Rural Areas in the Information Society: Diminishing Distance or Increasing Learning Capacity? J. Rural Stud. 2000, 16, 13–21. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A. The Revenge of the Places That Don’t Matter (and What to Do about It). Camb. J. Reg. Econ. Soc. 2018, 11, 189–209. [Google Scholar] [CrossRef]
- Boschma, R.; Frenken, K. Why Is Economic Geography Not an Evolutionary Science? Towards an Evolutionary Economic Geography. J. Econ. Geogr. 2006, 6, 273–302. [Google Scholar] [CrossRef]
- Keating, M. The New Regionalism in Western Europe: Territorial Restructuring and Political Change; Edward Elgar: Cheltenham, UK, 1998. [Google Scholar]
- Pike, A.; Rodríguez-Pose, A.; Tomaney, J. Local and Regional Development; Routledge: London, UK, 2006. [Google Scholar]
- Heidenreich, M. Innovation Patterns and Location of European Low- and Medium-Technology Industries. Res. Policy 2009, 38, 483–494. [Google Scholar] [CrossRef]
- Cooke, P.; Heidenreich, M.; Braczyk, H.J. (Eds.) Regional Innovation Systems: The Role of Governance in a Globalized World, 2nd ed.; Routledge: London, UK, 2004. [Google Scholar]
- Sotarauta, M.; Mustikkamäki, N. Institutional Entrepreneurship, Power, and Knowledge in Innovation Systems: Institutionalization of Regenerative Medicine in Tampere, Finland. Environ. Plan. C Gov. Policy 2015, 33, 342–357. [Google Scholar] [CrossRef]
- Foray, D. Smart Specialisation: Opportunities and Challenges for Regional Innovation Policy; Routledge: London, UK, 2015. [Google Scholar]
- McCann, P.; Ortega-Argilés, R. Smart Specialization, Regional Growth and Applications to European Union Cohesion Policy. Reg. Stud. 2015, 49, 1291–1302. [Google Scholar] [CrossRef]
- European Investment Bank. Digitalization in Europe 2020–2021: Evidence from the EIB Investment Survey; European Investment Bank: Luxembourg, 2021. [Google Scholar]
- Aaldering, L.J.; Song, C.H. Of leaders and laggards: Towards digitalization of the process industries. Technovation 2021, 105, 102211. [Google Scholar] [CrossRef]
- Audretsch, D.; Colombelli, A.; Grilli, L.; Minola, T.; Rasmussen, E. Innovative start-ups and policy initiatives. Res. Policy 2020, 49, 104027. [Google Scholar] [CrossRef]
- Blichfeldt, H.; Faullant, R. Performance effects of digital technology adoption and product & service innovation: A process-industry perspective. Technovation 2021, 105, 102275. [Google Scholar]
- Holl, A.; Mariotti, I. An empirical study of drivers for the adoption of logistics innovation. Ind. Innov. 2021, 29, 760–791. [Google Scholar] [CrossRef]
- Yang, M.; Fu, M.; Zhang, Z. The adoption of digital technologies in supply chains: Drivers, process and impact. Echo. Forecast. Soc. Change 2021, 169, 120795. [Google Scholar] [CrossRef]
- Usai, A.; Fiano, F.; Petruzzelli, A.M.; Paoloni, P.; Briamonte, M.F.; Orlando, B. Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. J. Bus. Res. 2021, 133, 327–336. [Google Scholar] [CrossRef]
- Dyba, W.; Di Maria, E.; Chiarvesio, M. Actions fostering the adoption of Industry 4.0 technologies in manufacturing companies in European regions. Investig. Reg. 2022, 53, 27–46. [Google Scholar] [CrossRef]
- Fanelli, R.M. Rural small and medium enterprises development in Molise (Italy). Eur. Countrys. 2018, 10, 566–589. [Google Scholar] [CrossRef]
- Norris, L. The spatial implications of rural business digitalization: Case studies from Wales. Reg. Stud. Reg. Sci. 2020, 7, 499–510. [Google Scholar] [CrossRef]
- Shao, X.; Yang, Y.; Wang, L. Digital divide or digital welfare? The ole of the internet in shaping the sustainable employability of Chinese adults. J. Glob. Inf. Manag. 2021, 29, 20–36. [Google Scholar] [CrossRef]
- OECD. SME Digitalization to Manage Shocks and Transitions: An OECD D4SME Survey; OECD Publishing: Paris, France, 2024. [Google Scholar]
- OECD. OECD Digital Economy Outlook 2024 (Vol. 1); OECD Publishing: Paris, France, 2024. [Google Scholar]
- European Commission. Flash Eurobarometer 486: SMEs, Start-Ups, Scale-Ups and Entrepreneurship; TNS Political & Social: Brussels, Belgium, 2020; GESIS Data Archive, ZA7637. [Google Scholar] [CrossRef]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; W.W. Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Parasuraman, A. Technology Readiness Index (TRI): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. J. Serv. Res. 2000, 2, 307–320. [Google Scholar] [CrossRef]
- Heidenreich, M. Innovation and Institutional Embeddedness of Multinational Companies; Edward Elgar Publishing: Cheltenham, UK, 2006. [Google Scholar]
- Asheim, B.T.; Smith, H.L.; Oughton, C. Regional Innovation Systems: Theory, Empirics and Policy. Reg. Stud. 2011, 45, 875–891. [Google Scholar] [CrossRef]
- Asheim, B.T.; Gertler, M.S. The Geography of Innovation: Regional Innovation Systems. In The Oxford Handbook of Innovation; Fagerberg, J., Mowery, D.C., Nelson, R.R., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 291–317. [Google Scholar]
- Balland, P.A.; Boschma, R.; Frenken, K. Smart Specialization and RIS3: From Policy Panacea to Contextualized Strategy. Reg. Stud. 2015, 49, 1231–1244. [Google Scholar]
- Doloreux, D.; Parto, S. Regional Innovation Systems: Current Discourse and Unresolved Issues. Technol. Soc. 2005, 27, 133–153. [Google Scholar] [CrossRef]
- Iammarino, S.; Rodríguez-Pose, A.; Storper, M. Regional Inequality in Europe: Evidence, Theory and Policy Implications. J. Econ. Geogr. 2019, 19, 273–298. [Google Scholar] [CrossRef]
- Isaksen, A.; Trippl, M. Path Development in Different Regional Innovation Systems: A Conceptual Analysis. In Innovation Drivers and Regional Innovation Strategies; Parrilli, D., Fitjar, R., Rodríguez-Pose, A., Eds.; Routledge, Taylor & Francis: London, UK, 2016. [Google Scholar] [CrossRef]
- Lundvall, B.Å. (Ed.) National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning; Pinter Publishers: London, UK, 1992. [Google Scholar]
- Martin, R.; Sunley, P. Path Dependence and Regional Economic Evolution. J. Econ. Geogr. 2006, 6, 395–437. [Google Scholar] [CrossRef]
- Tödtling, F.; Trippl, M. Regional Innovation Systems. In Handbook of Regional Growth and Development Theories, 2nd ed.; Capello, R., Nijkamp, P., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2018; pp. 385–395. [Google Scholar]
- Van Dijk, J. The Digital Divide; Polity Press: Cambridge, UK, 2020. [Google Scholar]
- OECD. OECD SME and Entrepreneurship Outlook 2019; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Porter, M.E. Clusters and the New Economics of Competition. Harv. Bus. Rev. 1998, 76, 77–90. [Google Scholar]
- Gereffi, G. Global Value Chains and Development: Redefining the Contours of 21st Century Capitalism; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- European Commission. The Digital Economy and Society Index (DESI) 2020; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Ogrean, C.; Herciu, M. Romania’s SMEs on the Way to EU’s Twin Transition to Digitalization and Sustainability. Stud. Bus. Econ. 2021, 16, 282–295. [Google Scholar] [CrossRef]
- Graham, M. Regulate, Replicate, and Resist—The Conjunctural Geographies of Platform Urbanism. Urban Geogr. 2020, 41, 453–457. [Google Scholar] [CrossRef]
- Castells, M. The Rise of the Network Society, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Williams, R.; Edge, D. The Social Shaping of Technology. Res. Policy 1996, 25, 865–899. [Google Scholar] [CrossRef]
- Wyatt, S. Non-Users Also Matter: The Construction of Users and Non-Users of the Internet. In How Users Matter: The Co-Construction of Users and Technology; Oudshoorn, N., Pinch, T., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 67–79. [Google Scholar]
- Martin, R.; Sunley, P. Deconstructing Clusters: Chaotic Concept or Policy Panacea? J. Econ. Geogr. 2003, 3, 5–35. [Google Scholar] [CrossRef]
- Segarra Blasco, A.; Tomàs Porres, J.; Teruel, M. AI, Robots and Innovation in European SMEs. Small Bus. Econ. 2025, 65, 719–745. [Google Scholar] [CrossRef]
- Asheim, B.T.; Isaksen, A.; Trippl, M. Advanced Introduction to Regional Innovation Systems; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar]
- Veiga, P.M. Key Drivers of Green Innovation in Family Firms: A Machine Learning Approach. J. Fam. Bus. Manag. 2025, 15, 346–372. [Google Scholar] [CrossRef]
Model | AIC | BIC | Log-Like. | Entropy | Certainty | Non-0 Classes |
---|---|---|---|---|---|---|
3-Class | 75,696 | 75,960 | –37,813 | 0.489 | 0.533 | 3 |
4-Class | 75,243 | 75,611 | –37,572 | 0.534 | 0.523 | 4 |
5-Class | 76,473 | 76,947 | –38,173 | 0.238 | 0.792 | 3 |
Variable | Class 1 | Class 2 | Class 3 | Class 4 |
---|---|---|---|---|
AI | 0.0109 | 0.1483 | 0.4989 | 0.0560 |
Cloud | 0.2273 | 0.5877 | 0.9457 | 0.7586 |
Robotics | 0.0163 | 0.5183 | 0.3742 | 0.0268 |
Smart Devices | 0.0999 | 0.6465 | 0.7355 | 0.3417 |
Big Data | 0.0138 | 0.2155 | 0.7099 | 0.1863 |
High Speed Infra. | 0.1160 | 0.4182 | 0.8236 | 0.5394 |
Blockchain | 0.0008 | 0.0328 | 0.2400 | 0.0336 |
Employee Count (β) | — | 1.46 [1.29, 1.63] | 1.09 [0.97, 1.21] | 0.41 [0.31, 0.52] |
Digital Barrier Index (β) | — | 0.31 [0.22, 0.39] | 0.28 [0.20, 0.35] | 0.30 [0.26, 0.34] |
GVC (β) | — | 1.28 [0.92, 1.64] | 1.77 [1.50, 2.04] | 1.13 [0.90, 1.36] |
Mainly Goods (β) | — | 1.35 [1.01, 1.69] | −0.03 [−0.26, 0.21] | −0.37 [−0.53, −0.20] |
Location (Ordinal) (β) | — | −0.28 [−0.49, −0.07] | 0.78 [0.58, 0.99] | 0.59 [0.47, 0.72] |
Border Proximity (β) | — | 0.10 [−0.36, 0.56] | 0.46 [0.11, 0.81] | 0.47 [0.23, 0.71] |
DESI Index | 0.04 [0.03, 0.06] | 0.06 [0.03, 0.09] | 0.04 [0.02, 0.06] | |
Average Posterior Prob. | 0.9873 | 0.9245 | 0.8566 | 0.9760 |
ICC | 0.155 | 0.105 | 0.111 | |
Country-Level Variance | 0.190 | 0.017 | 0.039 | |
Estimated Pop. Share (%) | 50.78% | 8.67% | 7.12% | 33.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheleva, R.; Petkova, K.; Zdravkov, S. Divergent Paths of SME Digitalization: A Latent Class Approach to Regional Modernization in the European Union. World 2025, 6, 144. https://doi.org/10.3390/world6040144
Zheleva R, Petkova K, Zdravkov S. Divergent Paths of SME Digitalization: A Latent Class Approach to Regional Modernization in the European Union. World. 2025; 6(4):144. https://doi.org/10.3390/world6040144
Chicago/Turabian StyleZheleva, Rumiana, Kamelia Petkova, and Svetlomir Zdravkov. 2025. "Divergent Paths of SME Digitalization: A Latent Class Approach to Regional Modernization in the European Union" World 6, no. 4: 144. https://doi.org/10.3390/world6040144
APA StyleZheleva, R., Petkova, K., & Zdravkov, S. (2025). Divergent Paths of SME Digitalization: A Latent Class Approach to Regional Modernization in the European Union. World, 6(4), 144. https://doi.org/10.3390/world6040144