Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan
Abstract
1. Introduction
2. Research Site
Climate
3. Materials and Methods
3.1. Data Collection
3.2. Groundwater-Quality Mapping
3.3. Geostatistics
3.4. Semivariogram
3.5. Kriging
3.6. Cross-Validation
3.7. Reclassification and Overlay
4. Results and Discussion
4.1. Analysis of Groundwater-Quality Parameters
4.2. Histogram Analysis
4.3. Spatial Autocorrelation
4.4. Cross-Validation Results
4.5. Delineation Groundwater Quality
4.5.1. Electrical Conductivity (EC)
4.5.2. Sodium Absorption Ratio (SAR)
4.5.3. Residual Sodium Carbonate (RSC)
4.6. Overall Groundwater Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2021: Making Agrifood Systems More Resilient to Shocks and Stresses. Available online: https://www.fao.org/publications/sofa/2021/en/ (accessed on 19 April 2022).
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380721 (accessed on 4 October 2023).
- Qureshi, A.S.; Gill, M.A.; Sarwar, A. Sustainable groundwater management in Pakistan: Challenges and opportunities. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Javed, Q.; Arshad, M.; Bakhsh, A.; Shakoor, A.; Chatha, Z.A.; Ahmad, I. Redesigning of drip irrigation system using locally manufactured material to control pipe losses for orchard. Land Water 2014, 13, 1–4. [Google Scholar]
- Lucy, L.; Ali, A.; Garthwaite, B.; Jehangir, F. Punthakey, and Basharat Saeed. 2021. “Groundwater in Pakistan’s Indus Basin: Present and Future Prospects.” World Bank, Washington, DC. Available online: http://documents.worldbank.org/curated/en/501941611237298661 (accessed on 4 October 2023).
- Basharat, M.; Tariq, A.U.R. Groundwater modelling for need assessment of command scale conjunctive water use for addressing the exacerbating irrigation cost inequities in LBDC irrigation system, Punjab, Pakistan. Sustain. Water Resour. Manag. 2015, 1, 41–55. [Google Scholar] [CrossRef]
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef]
- Maas, E.V. Salinity and citriculture. Tree Physiol. 1993, 12, 195–216. [Google Scholar] [CrossRef]
- Qureshi, A.S.; McCormick, P.G.; Qadir, M.; Aslam, Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manag. 2008, 95, 1–10. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Muniraj, K.; Thomas, M.; Ravichandran, N.; Bidorn, B. Identifying influencing groundwater parameter on human health associate with irrigation indices using the Automatic Linear Model (ALM. In in a semi-arid region in India. Environ. Res. 2021, 202, 111778. [Google Scholar] [CrossRef]
- Karim, M.R.; Arham, M.A.; Shorif, M.J.U.; Ahsan, A.; Al-Ansari, N. GIS based geostatistical modelling and trends analysis of groundwater quality for suitable uses in Dhaka division. Sci. Rep. 2024, 14, 17449. [Google Scholar] [CrossRef]
- Shah, S.A.; Jehanzaib, M.; Kim, M.J.; Kwak, D.-Y.; Kim, T.-W. Spatial and temporal variation of annual and categorized precipitation in the Han River Basin, South Korea. KSCE J. Civ. Eng. 2022, 26, 1990–2001. [Google Scholar] [CrossRef]
- Delgado, C.; Pacheco, J.; Cabrera, A.; Batllori, E.; Orellana, R.; Bautista, F. Quality of groundwater for irrigation in tropical karst environment: The case of Yucatan, Mexico. Agric. Water Manag. 2010, 97, 1423–1433. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Roshan, H.; Arashpour, M.; Masoumi, H. Machine learning assisted Kriging to capture spatial variability in petrophysical property modelling. Mar. Pet. Geol. 2024, 167, 106967. [Google Scholar] [CrossRef]
- Kaliyappan, S.P.; Hasher, F.F.B.; Abdo, H.G.; Sajil Kumar, P.J.; Paneerselvam, B. A Novel Integrated Approach to Assess Groundwater Appropriateness for Agricultural Uses in the Eastern Coastal Region of India. Water 2024, 16, 2566. [Google Scholar] [CrossRef]
- Hassan, W.; Raza, M.F.; Alshameri, B.; Shahzad, A.; Khalid, M.H.; Nawaz, M.N. Statistical interpolation and spatial mapping of geotechnical soil parameters of District Sargodha, Pakistan. Bull. Eng. Geol. Environ. 2023, 82, 37. [Google Scholar] [CrossRef]
- Burrough, P.A. GIS and geostatistics: Essential partners for spatial analysis. Environ. Ecol. Stat. 2001, 8, 361–377. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Shah, S.A.; Jehanzaib, M.; Park, K.W.; Choi, S.; Kim, T.-W. Evaluation and decomposition of factors responsible for alteration in streamflow in lower watersheds of the han river basin using different Budyko-based functions. KSCE J. Civ. Eng. 2023, 27, 903–914. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Amini, H.; Ashrafzadeh, A.; Khaledian, M. Enhancing groundwater salinity estimation through integrated GMDH and geostatistical techniques to minimize Kriging interpolation error. Earth Sci. Inform. 2024, 17, 283–297. [Google Scholar] [CrossRef]
- Alshahrani, M.A.; Ahmad, M.; Laiq, M.; Nabi, M. Geostatistical analysis and multivariate assessment of groundwater quality. Sci. Rep. 2025, 15, 7435. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Liedl, R.; Kavousi, A. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environ. Earth Sci. 2015, 74, 1463–1486. [Google Scholar] [CrossRef]
- Shah, S.A.; Jehanzaib, M.; Yoo, J.; Hong, S.; Kim, T.-W. Investigation of the effects of climate variability, anthropogenic activities, and climate change on streamflow using multi-model ensembles. Water 2022, 14, 512. [Google Scholar] [CrossRef]
- Usman, M.; Hussain, E.; Rabbani, U.; Ghazi, S.; Irteza, S.M.; Gull, S. Spatiotemporal analysis of crop water requirements in Lower Chenab Canal (LCC) Irrigation System for the better management of water resources. Arab. J. Geosci. 2021, 14, 424. [Google Scholar] [CrossRef]
- Waqas, M.M.; Niaz, Y.; Ali, S.; Ahmad, I.; Fahad, M.; Rashid, H.; Awan, U.K. Soil salinity mapping using satellite remote sensing: A case study of Lower Chenab Canal system, Punjab. Earth Sci. Pak. 2020, 4, 07–09. [Google Scholar] [CrossRef]
- Shakoor, A.; Arshad, M.; Bakhsh, A.; Ahmed, R. GIS based assessment and delineation of groundwater quality zones and its impact on agricultural productivity. Pak. J. Agric. Sci. 2015, 52, 837–843. [Google Scholar]
- Adhikary, P.P.; Chandrasekharan, H.; Chakraborty, D.; Kamble, K. Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environ. Monit. Assess. 2010, 167, 599–615. [Google Scholar] [CrossRef]
- Chakraborty, B.; Roy, S.; Bera, B.; Adhikary, P.P.; Bhattacharjee, S.; Sengupta, D.; Shit, P.K. Evaluation of groundwater quality and its impact on human health: A case study from Chotanagpur plateau fringe region in India. Appl. Water Sci. 2022, 12, 25. [Google Scholar] [CrossRef]
- Samtio, M.S.; Rajper, K.H.; Daahar Hakro, A.A.; Lanjwani, M.F.; Mughari, A.Q.; Sadaf, R.; Rajper, R.H.; Mastoi, A.S.; Agheem, M.H.; Lashari, R.A.; et al. impact of water–sediment interaction on hydrogeochemical signature of dug well aquifer by using geospatial and multivariate statistical techniques of Islamkot sub-district, Tharparkar district, Sindh, Pakistan. Arab. J. Geosci. 2022, 15, 167. [Google Scholar] [CrossRef]
- Çankaya, Ş.; Varol, M.; Bekleyen, A. Hydrochemistry, water quality and health risk assessment of streams in Bismil plain, an important agricultural area in southeast Türkiye. Environ. Pollut. 2023, 331, 121874. [Google Scholar] [CrossRef]
- Etikala, B.; Adimalla, N.; Madhav, S.; Somagouni, S.G.; Keshava Kiran Kumar, P.L. Salinity problems in groundwater and management strategies in arid and semi-arid regions. In Groundwater Geochemistry; Madhav, S., Singh, P., Eds.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Ayers, R.; Westcot, D. Water Quality for Agriculture; FAO Irrigation and Drainage Paper; Food and Agriculture Organization: Rome, Italy, 1994; Volume 29. [Google Scholar]
- ESRI. ArcGIS 10.1: What’s New and Improved. Available online: https://www.esri.com (accessed on 14 June 2023).
- Elbeih, S.; Zaghloul, E.; Hagage, M.; Attia, W.; Abdelsadek, E.S.; El-Okbi, A.; Khalil, J. Groundwater Mapping of the New Delta Area (West of Nile Delta) Using Geographic Information Systems and Satellite Images. In Groundwater in Developing Countries: Case Studies from MENA, Asia and West Africa; Springer Nature: Cham, Switzerland, 2025; pp. 217–230. [Google Scholar]
- Barrena-González, J.; Lavado Contador, J.F.; Pulido Fernández, M. Mapping soil properties at a regional scale: Assessing deterministic vs. geostatistical interpolation methods at different soil depths. Sustainability 2022, 14, 10049. [Google Scholar] [CrossRef]
- Islam, M.A.; Rahman, M.M.; Bodrud-Doza, M.; Muhib, M.I.; Shammi, M.; Zahid, A.; Kurasaki, M. A study of groundwater irrigation water quality in south-central Bangladesh: A geo-statistical model approach using GIS and multivariate statistics. Acta Geochim. 2018, 37, 193–214. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, C. Development and applications of GIS-based spatial analysis in environmental geochemistry in the big data era. Environ. Geochem. Health 2023, 45, 1079–1090. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Stathopoulos, N.; Tsatsaris, A.; Kalogeropoulos, K. Geoinformatics for Geosciences: Advanced Geospatial Analysis Using RS, GIS and Soft Computing; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Li, Y.; Li, M.; Liu, Z.; Li, C. Combining kriging interpolation to improve the accuracy of forest aboveground biomass estimation using remote sensing data. IEEE Access 2020, 8, 128124–128139. [Google Scholar] [CrossRef]
- Kumar, P.J.S.; Jegathambal, P.; James, E.J. Multivariate and geostatistical analysis of groundwater quality in Palar river basin. Int. J. Geol. 2011, 4, 108–119. [Google Scholar]
- Bohling, G. Introduction to Geostatistics and Variogram Analysis; Kansas Geological Survey: Lawrence, KS, USA, 2005; Volume 1, pp. 1–20. [Google Scholar]
- Mohammad, Z.M.; Taghizadeh-Mehrjardi, R.; Akbarzadeh, A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. Not. Sci. Biol. 2010, 2, 92–103. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Zhang, B.; Song, K.; Li, X.; Li, J.; Duan, H. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric. Ecosyst. Environ. 2006, 113, 73–81. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Xi, B.; Yuan, Z.; Zhu, X.; Zhang, X. Effects of groundwater level variations on the nitrate content of groundwater: A case study in Luoyang area, China. Environ. Earth Sci. 2015, 74, 3969–3983. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997; Volume 483. [Google Scholar]
- Ali, A.; Ullah, Z.; Siddique, M.; Ghani, J.; Rashid, A.; Khalid, W.; Ashraf, W. Geochemical investigation of OCPs in the rivers along with drains and groundwater sources of Eastern Punjab, Pakistan. Expo. Health 2024, 16, 543–558. [Google Scholar] [CrossRef]
- Shahid, S.U.; Iqbal, J. Groundwater quality assessment using averaged water quality index: A case study of Lahore City, Punjab, Pakistan. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 042031. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Sedghamiz, A. Geostatistical analysis of spatial and temporal variations of groundwater level. Environ. Monit. Assess. 2007, 129, 277–294. [Google Scholar] [CrossRef]
- Khan, S.; Rana, T.; Gabriel, H.F.; Ullah, M.K. Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol. J. 2008, 16, 1635–1654. [Google Scholar] [CrossRef]
- Gharbia, A.S.; Gharbia, S.S.; Abushbak, T.; Wafi, H.; Aish, A.; Zelenakova, M.; Pilla, F. Groundwater quality evaluation using GIS based geostatistical algorithms. J. Geosci. Environ. Prot. 2016, 4, 89–103. [Google Scholar] [CrossRef]
- Allaoua, N.; Hafid, H.; Chenchouni, H. Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability. J. Arid Land 2024, 16, 147–167. [Google Scholar] [CrossRef]
- Farid, H.U.; Ahmad, I.; Anjum, M.N.; Khan, Z.M.; Iqbal, M.M.; Shakoor, A.; Mubeen, M. Assessing seasonal and long-term changes in groundwater quality due to over-abstraction using geostatistical techniques. Environ. Earth Sci. 2019, 78, 386. [Google Scholar] [CrossRef]
- Paneerselvam, B.; Ravichandran, N.; Li, P.; Thomas, M.; Charoenlerkthawin, W.; Bidorn, B. Machine learning approach to evaluate the groundwater quality and human health risk for sustainable drinking and irrigation purposes in South India. Chemosphere 2023, 336, 139228. [Google Scholar] [CrossRef]
- Amiri, V.; Sohrabi, N.; Dadgar, M.A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran. Environ. Earth Sci. 2015, 74, 6163–6176. [Google Scholar] [CrossRef]
- Adhikary, P.P.; Dash, C.J.; Chandrasekharan, H.; Rajput, T.B.S.; Dubey, S.K. Evaluation of groundwater quality for irrigation and drinking using GIS and geostatistics in a peri-urban area of Delhi, India. Arab. J. Geosci. 2012, 5, 1423–1434. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef]
- Jamal, A.S.I.M.; Jhumur, N.T.; Shaikh, M.A.A.; Moniruzzaman, M.; Uddin, M.R.; Siddique, M.A.B.; Al-Mansur, M.A.; Akbor, M.A.; Tajnin, J.; Ahmed, S. Spatial distribution and hydrogeochemical evaluations of groundwater and its suitability for drinking and irrigation purposes in kaligonj upazila of satkhira district of Bangladesh. Heliyon 2024, 10, e27857. [Google Scholar] [CrossRef]
- Latha, P.S.; Rao, K.N. An integrated approach to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Environ. Earth Sci. 2012, 66, 2143–2169. [Google Scholar] [CrossRef]
- Mezlini, W.; Amor, R.B.; Beneduci, A.; Romdhane, I.B.; Shammas, M.I.; Almazroui, M.; Attia, R. Effects of irrigation water quality on soil physico-chemical properties: Case study in North-West of Tunisia. Earth Syst. Environ. 2024, 8, 1541–1561. [Google Scholar] [CrossRef]
- Murtaza, G.; Rehman, M.Z.; Qadir, M.; Shehzad, M.T.; Zeeshan, N.; Ahmad, H.R.; Naidu, R. High residual sodium carbonate water in the Indian subcontinent: Concerns, challenges and remediation. Int. J. Environ. Sci. Technol. 2021, 18, 3257–3272. [Google Scholar] [CrossRef]
- Rajmohan, N.; Senthilkumar, M.; Alqarawy, A.M. Hydrogeochemistry and its relationship with land use pattern and monsoon in hard rock aquifer. Appl. Water Sci. 2025, 15, 57. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
Irrigation Water-Quality Parameters | Value Range * | Water Status |
---|---|---|
EC (dS/m) | <0.7 | Good |
0.8–3 | Marginal | |
>3 | Unsuitable | |
SAR | <7 | Good |
8–15 | Marginal | |
>15 | Unsuitable | |
RSC (meq/L) | <1.25 | Good |
1.26–2.5 | Marginal | |
>2.5 | Unsuitable |
Quality Parameters | Unit | Pre-Monsoon | Post-Monsoon | ||||||
---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | ||
EC | dS/m | 0.66 | 8.48 | 2.20 | 1.12 | 0.69 | 8.23 | 2.18 | 1.07 |
SAR | - | 1.28 | 21.64 | 9.63 | 3.94 | 1.22 | 31.28 | 8.68 | 4.13 |
RSC | meq/l | 0.00 | 7.43 | 2.24 | 1.53 | 0.04 | 13.10 | 2.62 | 1.99 |
EC_JUNE | SAR_JUNE | RSC_JUNE | EC_OCT | SAR_OCT | RSC_OCT | |
---|---|---|---|---|---|---|
EC_JUNE | 1 | |||||
SAR_JUNE | 0.660115 | 1 | ||||
RSC_JUNE | 0.100016 | 0.622015 | 1 | |||
EC_OCT | 0.957511 | 0.604278 | 0.066699 | 1 | ||
SAR_OCT | 0.735016 | 0.900589 | 0.503289 | 0.726125 | 1 | |
RSC_OCT | 0.099779 | 0.572305 | 0.892347 | 0.082647 | 0.482275 | 1 |
Season | Parameter | Best Fit Model | Nugget (Co) | Sill (Co+C) | Partial Sill (C) | * Ratio × 100 | RSS | Model R2 |
---|---|---|---|---|---|---|---|---|
Pre-monsoon | EC | Spherical | 1.276 | 3.065 | 1.789 | 41.63 | 0.359 | 0.816 |
SAR | Exponential | 12.400 | 74.930 | 62.53 | 16.55 | 0.552 | 0.491 | |
RSC | Exponential | 1.400 | 9.362 | 7.962 | 14.95 | 0.280 | 0.646 | |
Post-monsoon | EC | Exponential | 0.356 | 2.949 | 2.593 | 12.07 | 0.334 | 0.795 |
SAR | Exponential | 22.600 | 62.660 | 40.06 | 36.07 | 0.275 | 0.565 | |
RSC | Exponential | 1.710 | 11.290 | 9.58 | 15.15 | 0.576 | 0.593 |
Time | Quality Parameters | Best Fitted Model | ME | RMSE | ASE | MSE |
---|---|---|---|---|---|---|
Pre-monsoon | EC | Spherical | −0.0229 | 1.5037 | 1.4015 | 0.0044 |
SAR | Exponential | 0.0632 | 8.0728 | 9.2068 | −0.0027 | |
RSC | Exponential | 0.1546 | 2.8566 | 4.2552 | 0.0093 | |
Post-monsoon | EC | Exponential | −0.0355 | 1.4572 | 1.2489 | −0.0153 |
SAR | Exponential | 0.1676 | 7.1523 | 8.6503 | −0.0023 | |
RSC | Exponential | 0.0923 | 3.0093 | 3.9464 | −0.0024 |
Sub-Zones | EC | SAR | RSC | ||||||
---|---|---|---|---|---|---|---|---|---|
Variation in Area (km2) | Variation in Area (km2) | Variation in Area (km2) | |||||||
Good | Marginal | Unsuitable | Good | Marginal | Unsuitable | Good | Marginal | Unsuitable | |
Wer | −109.35 | 113.88 | −4.53 | 126.82 | −126.82 | 0.00 | 8.41 | −8.41 | 0.00 |
Veryam | 0.00 | 36.71 | −36.71 | 45.73 | −79.86 | 34.14 | −97.25 | 92.75 | 4.51 |
Uqbana | 9.09 | −59.76 | 50.66 | 176.02 | −161.73 | −14.29 | 194.21 | −265.01 | 70.80 |
Tarkhani | −19.34 | −12.25 | 31.59 | 180.51 | −182.44 | 1.93 | −108.95 | −117.98 | 226.92 |
Tandianwala | 12.39 | 78.23 | −90.61 | 157.11 | −125.16 | −31.94 | −60.63 | −5.22 | 65.84 |
Sultanpur | −2.59 | 2.59 | 0.00 | −3.89 | 3.89 | 0.00 | −23.98 | 23.98 | 0.00 |
Sangla | 14.34 | 3.26 | −17.59 | 33.88 | −33.88 | 0.00 | 68.42 | −110.77 | 42.36 |
Sagar | 44.48 | −44.48 | 0.00 | −1.35 | 1.35 | 0.00 | 144.21 | −144.21 | 0.00 |
Paccadalla | −9.71 | −4.53 | 14.24 | 228.49 | −169.59 | −58.90 | 19.42 | −60.20 | 40.78 |
Mohalan | 38.81 | −38.81 | 0.00 | 175.27 | −175.27 | 0.00 | −518.05 | 351.19 | 166.86 |
Kot_Khudayar | 47.37 | −44.77 | −2.60 | 53.21 | −58.40 | 5.19 | 70.73 | −78.52 | 7.79 |
Kanya | −63.09 | 63.74 | −0.65 | 241.94 | −238.69 | −3.25 | −16.91 | −27.32 | 44.23 |
Dhaular | 0.00 | 153.48 | −153.48 | −126.93 | 126.93 | 0.00 | −7.77 | 7.77 | 0.00 |
Chuharkana | −47.83 | 47.83 | 0.00 | 91.07 | −91.07 | 0.00 | −129.73 | −148.73 | 278.45 |
Buchiana | 4.53 | 140.36 | −144.89 | 200.51 | −144.89 | −55.63 | −42.69 | −47.22 | 89.91 |
Bhagat | −8.42 | 14.90 | −6.48 | −244.86 | 146.40 | 98.46 | −218.95 | 136.68 | 82.27 |
Aminpur | −20.21 | −8.47 | 28.68 | 62.58 | −82.78 | 20.21 | −27.38 | 4.56 | 22.81 |
Parameters | Quality | Range | Re-Class Value | Area, km2 (%) | |
---|---|---|---|---|---|
Pre-Monsoon (June) | Post-Monsoon (October) | ||||
EC (dS/m) | Good | <0.7 | 3 | 5324.89 (29.21) | 5210.27 (28.58) |
Marginal | 0.8–3 | 2 | 8165.74 (44.80) | 8476.57 (46.50) | |
Unsuitable | >3 | 1 | 4736.90 (25.99) | 4540.69 (24.91) | |
SAR | Good | <7 | 3 | 9835.79 (53.96) | 11,215.10(61.53) |
Marginal | 8–15 | 2 | 8026.51 (44.04) | 6656.27 (36.52) | |
Unsuitable | >15 | 1 | 365.22 (2.00) | 356.16 (1.95) | |
RSC (meq/L) | Good | <1.25 | 3 | 10,695.11(58.68) | 9938.11 (54.52) |
Marginal | 1.26–2.5 | 2 | 6534.53 (35.85) | 6152.47 (33.75) | |
Unsuitable | >2.5 | 1 | 997.89 (5.47) | 2136.95 (11.72) | |
Overall quality | Good | 8–9 | - | 3249.46 (17.83) | 3153.62 (17.30) |
Marginal | 6–8 | - | 7808.93 (42.84) | 8117.17 (44.53) | |
Unsuitable | 3–6 | - | 7169.14 (39.33) | 6956.74 (38.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakoor, A.; Rasheed, I.; Sattar, M.N.; Ogunrinde, A.T.; Shah, S.A.; Farid, H.U.; Keerio, H.A.; Butt, A.Q.; Khan, A.A.; Riaz, M.S. Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan. World 2025, 6, 115. https://doi.org/10.3390/world6030115
Shakoor A, Rasheed I, Sattar MN, Ogunrinde AT, Shah SA, Farid HU, Keerio HA, Butt AQ, Khan AA, Riaz MS. Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan. World. 2025; 6(3):115. https://doi.org/10.3390/world6030115
Chicago/Turabian StyleShakoor, Aamir, Imran Rasheed, Muhammad Nouman Sattar, Akinwale T. Ogunrinde, Sabab Ali Shah, Hafiz Umar Farid, Hareef Ahmed Keerio, Asim Qayyum Butt, Amjad Ali Khan, and Malik Sarmad Riaz. 2025. "Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan" World 6, no. 3: 115. https://doi.org/10.3390/world6030115
APA StyleShakoor, A., Rasheed, I., Sattar, M. N., Ogunrinde, A. T., Shah, S. A., Farid, H. U., Keerio, H. A., Butt, A. Q., Khan, A. A., & Riaz, M. S. (2025). Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan. World, 6(3), 115. https://doi.org/10.3390/world6030115