Toward Designing Bioretention Landscapes for Tropical and Wet Equatorial Climates: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database and Search Strategy
2.2. Exclusion and Inclusion Criteria
2.3. Research Questions
- -
- Where are the bioretention designs studied in the Köppen–Geiger’s A climates?
- -
- What materials, depth, and layers are used to design bioretention landscapes in the Köppen–Geiger’s A climates?
- -
- What plant materials are used to design bioretention landscapes in the Köppen–Geiger’s A climates?
- -
- What are the limitations and gaps of knowledge regarding the bioretention design in the Köppen–Geiger’s A climates?
2.4. Data Synthesis and Analysis
2.5. Visual Representation and Characterization
2.6. Evaluation of Study Quality
3. Results
3.1. Selection Results
3.2. Data Synthesis—Benefits Studied
3.3. Data Synthesis—Design Criteria
3.4. Design Recommendations
3.5. Remaining Gaps
4. Discussion
4.1. Key Results
4.2. Contributions
4.3. Implementation
4.4. Limitations and Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Austin, G. Green Infrastructure for Landscape Planning: Integrating Human and Natural Systems; Routledge: London, UK, 2014. [Google Scholar]
- Lourdes, K.T.; Gibbins, C.N.; Hamel, P.; Sanusi, R.; Azhar, B.; Lechner, A.M. A review of urban ecosystem services research in Southeast Asia. Land 2021, 10, 40. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces Between Buildings; Routledge: London, UK, 2012. [Google Scholar]
- Wanitchayapaisit, C.; Suppakittpaisarn, P.; Charoenlertthanakit, N.; Surinseng, V.; Yaipimol, E.; Rinchumphu, D. Rain garden design for stormwater management in Chiang Mai, Thailand: A Research-through-Design Study. Nakhara J. Environ. Des. Plan. 2022, 21, 222. [Google Scholar] [CrossRef]
- Rinchumphu, D.; Tangsongsuwan, R.; Kridakorn Na Ayudhya, T.; Irvine, K.; Chua, L.; Suppakittpaisarn, P.; Chakrawattana, N. Potential Evaluation of Urban Bioretention Design (Technical Report). Faculty of Engineering, Chiang Mai University: Chiang Mai, Thailand. 2021.
- USEPA. Managing Wet Weather with Green Infrastructure: Action Stratefy; US Environmental Protection Agency: Washington, DC, USA, 2008.
- European-Commission. Building a Green Infrastructure for Europe; European Union Publication: Brussels, Belgium, 2013. [Google Scholar]
- Department of Planning and Local Government: Government of South Australia. Water Sensitive Urban Design—Greater Adelaide Region; Government of South Australia: Adelaide, South Australia, 2010.
- Public Utilities Board (PUB). Active, Beautiful, Clean (ABC) Waters Design Guidelines. 2014. Available online: https://www.nlb.gov.sg/main/article-detail?cmsuuid=cfc0035c-4734-4d26-8fe1-8f0c6a9e1e6c (accessed on 12 February 2025).
- Ong, G.; Kalyanaraman, G.; Wong, K.; Wong, T. Monitoring Singapore’s first bioretention system: Rain garden at balam estate. In Proceedings of the 7th International Conference on Water Sensitive Urban Design, Melbourne, VIC, Australia, 21–23 March 2012; pp. 601–608. [Google Scholar]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Young, J.M.; Solomon, M.J. How to critically appraise an article. Nat. Clin. Pract. Gastroenterol. Hepatol. 2009, 6, 82–91. [Google Scholar] [CrossRef]
- Goh, H.; Zakaria, N.; Lau, T.; Foo, K.; Chang, C.; Leow, C. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area. Urban Water J. 2017, 14, 134–142. [Google Scholar] [CrossRef]
- Adugna, A.T.; Andrianisa, H.A.; Konate, Y.; Ndiaye, A.; Maiga, A.H. Performance comparison of sand and fine sawdust vermifilters in treating concentrated grey water for urban poor. Environ. Technol. 2015, 36, 2763–2769. [Google Scholar] [CrossRef]
- Hermawan, A.A.; JiaWei, C.; Pasbakhsh, P.; Hart, F.; Talei, A. Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Appl. Clay Sci. 2018, 160, 106–115. [Google Scholar] [CrossRef]
- Wang, J.; Chua, L.H.; Shanahan, P. Evaluation of pollutant removal efficiency of a bioretention basin and implications for stormwater management in tropical cities. Environ. Sci. Water Res. Technol. 2017, 3, 78–91. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Praveen, R. Dracaena marginata biofilter: Design of growth substrate and treatment of stormwater runoff. Environ. Technol. 2016, 37, 1101–1109. [Google Scholar] [CrossRef]
- Yau, W.K.; Radhakrishnan, M.; Liong, S.-Y.; Zevenbergen, C.; Pathirana, A. Effectiveness of ABC waters design features for runoff quantity control in urban Singapore. Water 2017, 9, 577. [Google Scholar] [CrossRef]
- Lim, H.; Lim, W.; Hu, J.; Ziegler, A.; Ong, S. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef]
- Lee, L.Y.; Wang, B.; Guo, H.; Hu, J.Y.; Ong, S.L. Aluminum-based water treatment residue reuse for phosphorus removal. Water 2015, 7, 1480–1496. [Google Scholar] [CrossRef]
- Lim, F.Y.; Neo, T.H.; Guo, H.; Goh, S.Z.; Ong, S.L.; Hu, J.; Lee, B.C.Y.; Ong, G.S.; Liou, C.X. Pilot and field studies of modular bioretention tree system with talipariti tiliaceum and engineered soil filter media in the tropics. Water 2021, 13, 1817. [Google Scholar] [CrossRef]
- Hermawan, A.A.; Talei, A.; Leong, J.Y.C.; Jayatharan, M.; Goh, H.W.; Alaghmand, S. Performance assessment of a laboratory scale prototype biofiltration system in tropical region. Sustainability 2019, 11, 1947. [Google Scholar] [CrossRef]
- Missouri Botanical Garden. Missouri Botanical Garden Plant Finder. Available online: https://www.missouribotanicalgarden.org/ (accessed on 1 October 2024).
- The National Parks of Singapore. Flora and Fauna Web. Available online: https://www.nparks.gov.sg/florafaunaweb (accessed on 1 October 2024).
- Suppakittpaisarn, P.; Surinseng, V.; Wanitchayapaisit, C.; Yaipimol, E.; Xu, Q. Healthy Ecosystem Services and Healthy Human Settlements: Opportunities and Challenges in Northern Thailand. Landsc. Archit. J. 2020, 27, 77–88. [Google Scholar]
- Wanitchayapaisit, C.; Charoenlertthanakit, N.; Surinseng, V.; Yaipimol, E.; Rinchumphu, D.; Suppakittpaisarn, P. Enhancing Water-Sensitive Urban Design in Chiang Mai through a Research–Design Collaboration. Sustainability 2023, 15, 16127. [Google Scholar] [CrossRef]
- Gonzalez-Merchan, C.; Barraud, S.; Le Coustumer, S.; Fletcher, T. Monitoring of clogging evolution in the stormwater infiltration system and determinant factors. Eur. J. Environ. Civ. Eng. 2012, 16, s34–s47. [Google Scholar] [CrossRef]
- Kridakorn Na Ayutthaya, T.; Suropan, P.; Sundaranaga, C.; Phichetkunbodee, N.; Anambutr, R.; Suppakittpaisarn, P.; Rinchumphu, D. The influence of bioretention assets on outdoor thermal comfort in the urban area. Energy Rep. 2023, 9, 287–294. [Google Scholar] [CrossRef]
- Hunt, W.F.; Lord, B.; Loh, B.; Sia, A. Plant Selection for Bioretention Systems and Stormwater Treatment Practices; Springer Nature: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 16. [Google Scholar] [CrossRef]
- Jain, N.; Yadav, S.; Taneja, S.; Ray, S.; Haritash, A.; Pipil, H. Phosphate removal from urban stormwater runoff using Canna lily and Cyperus alternifolius-based bioretention system. Sustain. Water Resour. Manag. 2024, 10, 65. [Google Scholar] [CrossRef]
- Ahmed, F.; Loc, H.H.; Babel, M.; Stamm, J. A community-scale study on nature-based solutions (NBS) for stormwater management under tropical climate: The case of the Asian Institute of Technology (AIT), Thailand. J. Hydroinformatics 2024, 26, 1080–1099. [Google Scholar] [CrossRef]
- Narayanasamydamodaran, S.; Kumar, N.; Zuo, J.e. The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail. Chemosphere 2024, 364, 143276. [Google Scholar] [CrossRef]
- Vijuksungsith, P.; Satapanajaru, T.; Muangkaew, K.; Boonprasert, R. Performance of bioretention systems by umbrella plant (Cyperus alternifolius L.) and common reed (Phragmites australis) for removal of microplastics. Environ. Technol. Innov. 2024, 35, 103734. [Google Scholar] [CrossRef]
- Locatelli, L.; Guerrero, M.; Russo, B.; Martínez-Gomariz, E.; Sunyer, D.; Martínez, M. Socio-Economic Assessment of Green Infrastructure for Climate Change Adaptation in the Context of Urban Drainage Planning. Sustainability 2020, 12, 3792. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; AKl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Author, Year | Country | Research Questions | Pollutants and Nutrients Removal | Water Quantity Measurement |
---|---|---|---|---|
Goh, et al., 2017 [14] | Malaysia | What kind of filter media materials work best in bioretention performance? | TN, TSS, TP | None |
Adugna, et al., 2015 [15] | Berkina Faso | To what extent do sawdust and sand vermifilters compare in stormwater quality treatment? | BOD, TOD, dCOD, TSS, E. coli | None |
Hermawan, et al., 2018 [16] | Malaysia | To what extent do alloysite nanotubes help remove heavy metal ions and improve infiltration rate? | Heavy metal ions (Fe, Mn, Cu, Zn, Ni, and Pb) | Infiltration rate |
Wang, et al., 2017 [17] | Singapore | What are the performance levels of an established rain garden in Singapore (Balam Estate Garden)? | 15 water quality measurements (i.e., N, P, TSS, and COD) | Flow rate and ponding water level |
Vijarayaghavan and Praveen, 2016 [18] | India | To what extent can Dracanea marginata work in vegetated biofilter? | Heavy metal ions (Al, Fe, Cu, Cr, Ni, Zn, Cd, and Pb) | None |
Yau, et al., 2017 [19] | Singapore | To what extent can Waterway Ridges be effective on runoff quantity control based on ABC water design features? | None | Peak flow reduction |
Lim, et al., 2015 [20] | Singapore | What filter media (out of five) works best in removing heavy metals? | Heavy metals (Cu, Zn, Pb), TOC, DOC | None |
Lee, et al., 2015 [21] | Singapore | How effective is the Aluminum-based water treatment residue toward phosphorus removal in a bioretention cell? | pH, conductivity, TOC, TN, TP | None |
Lim, et al., 2021 [22] | Singapore | How effective are modular bioretention tree systems and engineered soil media toward pollution removal in a bioretention cell? | TSS, TP, TN, Pb | None |
Hermawan, et al., 2019 [23] | Malaysia | To what extent does a lab-scale prototype biofiltration system work in removing water pollution? | TP, heavy metals (Fe, Cu, Mn, Ni, Pb, and Zn) | None |
Authors, Year | Ponding Depth | Plant Species | Filter Media Layer | Transition Layer | Gravel Layer | Additional Note |
---|---|---|---|---|---|---|
Goh, et al., 2017 [14] | 150 mm | Hibiscus rosa-sinensis | 600 mm (sand, topsoil, and leaf compost mixed with one of the following: printed paper, coconut husk, cockle shell, tire crumb, newspaper, and none) | None | 50 mm (coarse gravel) | Geotextile between filter media and gravel |
Adugna, et al., 2015 [15] | 100 mm | None | 500 mm (sawdust mixed with earthworms layered on top of sand) | 5 mm (fine gravel) | 5 mm (coarse gravel) | Use earthworms as a part of biofiltration. |
Hermawan, et al., 2018 [16] | 200 mm | None | 400 mm (fly ash and different types of halloysite nanotubes) | 100 mm (washed sand) | 300 mm (coarse gravel) | None |
Wang, et al., 2017 [17] | None | 14 native tropical species such as Cyperus alternifolius, Thalia geniculata L., and Typha angustifolia L. | 400 mm (sandy-loam) | 100 mm (Fine sand) | 150 mm (fine gravel) | 300 mm of saturated anoxic zone (hard rocks and woodchip) between the transition and drainage layer |
Vijarayaghavan and Praveen, 2016 [18] | None | Dracanea marginata | 300 mm (garden soil and biofilter materials which is a mix of red soil, perlite, vermiculite, peat, fine sand, and Sargassum biomass) | 50 mm (coarse sand) | 500 mm (gravel) | None |
Yau, et al., 2017 [19] | 200 mm | None | 400 mm (not mentioned) | 100 mm (not mentioned) | 450–750 mm (gravel) | Includes several rain gardens and other strategies across the site. |
Lim, et al., 2015 [20] | 700 mm/400 mm | None | 300 mm/600 mm (potting soil, compost, coconut coir, sludge, and commercial mix) | None | None | None |
Lee, et al., 2015 [21] | 60 mm | None | 200 mm (sand, Aluminum-based water treatment residue, and compost) | 20 mm (fine gravel) | 20 mm (coarse gravel) | None |
Lim, et al., 2021 [22] | 200 mm | Talipariti tiliaceum/Sterculia macrophylla | 1000 mm (coconut fiber, water treatment residue, soil, and sand) | 100 mm (coarse sand) | 100 mm (gravel) | Talipariti tiliaceum works better |
Hermawan, et al., 2019 [23] | 150 mm | Pedilanthus tithymaloides/Cyperus alternifolius | 400 mm (fine sand) | 100 mm (medium sand) | 300 mm (coarse sand) | Cyperus alternifolius works better due to root depth. |
Species Name | Family | Common Name | Height (m) | Spread (M) | Condition | Sources |
---|---|---|---|---|---|---|
Hibiscus rosa-sinensis | Malvaceae | Chinese hibiscus | 2 | 2 | Full sun, good drainage, low humidity | [24] |
Dracaena marginata | Asparagaceae | Dragon tree | 5 | 1.5 | Part shade, medium drainage, drought tolerant | [24] |
Pedilanthus tithymaloides | Euphorbiaceae | Redbird flower | 2 | 1.5 | Full sun to part shade, medium drainage, drought tolerant | [24] |
Typha angustifolia L. | Typhaceae | Narrowleaf Cattail | 1.5 | 1.5 | Full sun to part shade, low drainage, flood-tolerant | [24] |
Thalia geniculata L. | Marantaceae | Swamp lily | - | - | Full sun, aquatic | [25] |
Cyperus alternifolius | Cyperaceae | Umbrella plant | 0.6 | 0.6 | Part to full shade, wet soil | [24] |
Talipariti (Hibiscus) tilliaceus | Malvaceae | Sea Hibiscus | 8 | 8 | Full sun, medium to wet soil, flood-tolerant | [24] |
Sterculia macrophylla | Malvaceae | Broad-leaved Sterculia | 30 | 30 | Full sun, wet soil, flood-tolerant | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suppakittpaisarn, P.; Yaipimol, E.; Rinchumphu, D.; Ei, H.T.H.; Htun, M.N.; Ayutthaya, T.K.N. Toward Designing Bioretention Landscapes for Tropical and Wet Equatorial Climates: A Systematic Literature Review. World 2025, 6, 56. https://doi.org/10.3390/world6020056
Suppakittpaisarn P, Yaipimol E, Rinchumphu D, Ei HTH, Htun MN, Ayutthaya TKN. Toward Designing Bioretention Landscapes for Tropical and Wet Equatorial Climates: A Systematic Literature Review. World. 2025; 6(2):56. https://doi.org/10.3390/world6020056
Chicago/Turabian StyleSuppakittpaisarn, Pongsakorn, Ekachai Yaipimol, Damrongsak Rinchumphu, Hay Thar Htar Ei, Min Nyo Htun, and Thidarat Kridakorn Na Ayutthaya. 2025. "Toward Designing Bioretention Landscapes for Tropical and Wet Equatorial Climates: A Systematic Literature Review" World 6, no. 2: 56. https://doi.org/10.3390/world6020056
APA StyleSuppakittpaisarn, P., Yaipimol, E., Rinchumphu, D., Ei, H. T. H., Htun, M. N., & Ayutthaya, T. K. N. (2025). Toward Designing Bioretention Landscapes for Tropical and Wet Equatorial Climates: A Systematic Literature Review. World, 6(2), 56. https://doi.org/10.3390/world6020056