Assessing Lactation Curve Characteristics of Dairy Cows Managed under Contrasting Husbandry Practices and Stressful Environments in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Research Design
2.3. Estimating Lactation Curve Parameters and Lactation Milk Production
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sekaran, U.; Lai, L.; Ussiri, D.A.N.; Kumar, S.; Clay, S. Role of Integrated Crop-Livestock Systems in Improving Agriculture Production and Addressing Food Security—A Review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- M’Hamdi, N.; Darej, C.; Attia, K.; El Akrem Znaidi, I.; Khattab, R.; Djelailia, H.; Bouraoui, R.; Taboubi, R.; Marzouki, L.; Ayadi, M. Modelling THI Effects on Milk Production and Lactation Curve Parameters of Holstein Dairy Cows. J. Therm. Biol. 2021, 99, 102917. [Google Scholar] [CrossRef] [PubMed]
- Mbuthia, J.M.; Mayer, M.; Reinsch, N. Modeling Heat Stress Effects on Dairy Cattle Milk Production in a Tropical Environment Using Test-Day Records and Random Regression Models. Animal 2021, 15, 100222. [Google Scholar] [CrossRef] [PubMed]
- Ekine-Dzivenu, C.C.; Mrode, R.A.; Ojango, J.M.K.; Okeyo Mwai, A. Evaluating the Impact of Heat Stress as Measured by Temperature- Humidity Index (THI) on Test-Day Milk Yield of Dairy Cattle in Tanzania. Livest. Sci. 2019, 242, 104314. [Google Scholar] [CrossRef]
- Ojango, J.M.K.; Mrode, R.; Rege, J.E.O.; Mujibi, D.; Strucken, E.M.; Gibson, J.; Mwai, O. Genetic Evaluation of Test-Day Milk Yields from Smallholder Dairy Production Systems in Kenya Using Genomic Relationships. J. Dairy Sci. 2019, 102, 5266–5278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrode, R.; Ojango, J.; Ekine-Dzivenu, C.; Aliloo, H.; Gibson, J.; Okeyo, M.A. Genomic Prediction of Crossbred Dairy Cattle in Tanzania: A Route to Productivity Gains in Smallholder Dairy Systems. J. Dairy Sci. 2021, 104, 11779–11789. [Google Scholar] [CrossRef] [PubMed]
- Chawala, A.R.; Banos, G.; Peters, A.; Chagunda, M.G.G. Farmer-Preferred Traits in Smallholder Dairy Farming Systems in Tanzania. Trop. Anim. Health Prod. 2019, 51, 1337–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shija, D.S.; Mwai, O.A.; Migwi, P.K.; Komwihangilo, D.M.; Bebe, B.O. Identifying Positive Deviant Farms Using Pareto-Optimality Ranking Technique to Assess Productivity and Livelihood Benefits in Smallholder Dairy Farming under Contrasting Stressful Environments in Tanzania. World 2022, 3, 639–656. [Google Scholar] [CrossRef]
- Albanna, B.H.; Heeks, R.; Pawelke, A.; Boy, J.; Handl, J.; Gluecker, A. Data-Powered Positive Deviance: Combining Traditional and Non-Traditional Data to Identify and Characterise Development-Related Outperformers. Dev. Eng. 2022, 7, 100090. [Google Scholar] [CrossRef]
- Ulukan, D.; Grillot, M.; Benoit, M.; Bernes, G.; Dumont, B.; Magne, M.-A.; Amaral Monteiro, L.; Parsons, D.; Veysset, P.; Ryschawy, J.; et al. Positive Deviant Strategies Implemented by Organic Multi-Species Livestock Farms in Europe. Agric. Syst. 2022, 201, 103453. [Google Scholar] [CrossRef]
- Migose, S.A. Addressing Variation in Smallholder Farming Systems to Improve Dairy Development in Kenya. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Modernel, P.; Dogliotti, S.; Alvarez, S.; Corbeels, M.; Picasso, V.; Tittonell, P.; Rossing, W.A.H. Identification of Beef Production Farms in the Pampas and Campos Area That Stand out in Economic and Environmental Performance. Ecol. Indic. 2018, 89, 755–770. [Google Scholar] [CrossRef]
- Steinke, J.; Mgimiloko, M.G.; Graef, F.; Hammond, J.; van Wijk, M.T.; van Etten, J. Prioritizing Options for Multi-Objective Agricultural Development through the Positive Deviance Approach. PLoS ONE 2019, 14, e0212926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelhart Toorop, R.; Ceccarelli, V.; Bijarniya, D.; Jat, M.L.; Jat, R.K.; Lopez-Ridaura, S.; Groot, J.C.J. Using a Positive Deviance Approach to Inform Farming Systems Redesign: A Case Study from Bihar, India. Agric. Syst. 2020, 185, 102942. [Google Scholar] [CrossRef]
- Shija, D.S.; Mwai, O.A.; Migwi, P.K.; Mrode, R.; Bebe, B.O. Characterizing Management Practices in High- and Average-Performing Smallholder Dairy Farms under Contrasting Environmental Stresses in Tanzania. World 2022, 3, 821–839. [Google Scholar] [CrossRef]
- Wood, P.D.P. Algebraic Model of the Lactation Curve in Cattle. Nature 1967, 216, 164–165. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Ferrell, C.L. A Note on Lactation Curves of Crossbred Cows. Anim. Sci. 1984, 39, 479–482. [Google Scholar] [CrossRef]
- Grossman, M.; Kuck, A.L.; Norton, H.W. Lactation Curves of Purebred and Crossbred Dairy Cattle. J. Dairy Sci. 1986, 69, 195–203. [Google Scholar] [CrossRef]
- Ali, T.E.; Schaeffer, L.R. Accounting for Covariances among Test Day Milk Yields in Dairy Cows. Can. J. Anim. Sci. 1987, 67, 637–644. [Google Scholar] [CrossRef]
- Dijkstra, J.; France, J.; Dhanoa, M.S.; Maas, J.A.; Hanigan, M.D.; Rook, A.J.; Beever, D.E. A Model to Describe Growth Patterns of the Mammary Gland During Pregnancy and Lactation. J. Dairy Sci. 1997, 80, 2340–2354. [Google Scholar] [CrossRef]
- Pollott, G.E. A Biological Approach to Lactation Curve Analysis for Milk Yield. J. Dairy Sci. 2000, 83, 2448–2458. [Google Scholar] [CrossRef]
- Pizarro Inostroza, M.G.; Navas González, F.J.; Landi, V.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez, M.D.A. Software-Automatized Individual Lactation Model Fitting, Peak and Persistence and Bayesian Criteria Comparison for Milk Yield Genetic Studies in Murciano-Granadina Goats. Mathematics 2020, 8, 1505. [Google Scholar] [CrossRef]
- Ehrlich, J.L. Quantifying Shape of Lactation Curves, and Benchmark Curves for Common Dairy Breeds and Parities. Bov. Pract. 2011, 45, 88–96. [Google Scholar]
- Rodrigues, P.F.; Menezes, L.M.; Azambuja, R.C.C.; Suñé, R.W.; Barbosa Silveira, I.D.; Cardoso, F.F. Milk Yield and Composition from Angus and Angus-Cross Beef Cows Raised in Southern Brazil1. J. Anim. Sci. 2014, 92, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Landete-Castillejos, T.; Gallego, L. Technical Note: The Ability of Mathematical Models to Describe the Shape of Lactation Curves1. J. Anim. Sci. 2000, 78, 3010–3013. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Ferrell, C.L.; Roberts, A.J. Lactation and Calf Weight Traits of Mature Crossbred Cows Fed Varying Daily Levels of Metabolizable Energy. J. Anim. Sci. 2000, 78, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Quist, M.A.; LeBlanc, S.J.; Hand, K.J.; Lazenby, D.; Miglior, F.; Kelton, D.F. Agreement of Predicted 305-Day Milk Yields Relative to Actual 305-Day Milk Weight Yields. J. Dairy Sci. 2007, 90, 4684–4692. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K. Optimizing the Use of Breed Types in Developing Country Livestock Production Systems: A Neglected Research Area. J. Anim. Breed. Genet. 2014, 131, 329–340. [Google Scholar] [CrossRef]
- Marshall, K.; Gibson, J.P.; Mwai, O.; Mwacharo, J.M.; Haile, A.; Getachew, T.; Mrode, R.; Kemp, S.J. Livestock Genomics for Developing Countries—African Examples in Practice. Front. Genet. 2019, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.; Salmon, G.R.; Tebug, S.; Juga, J.; MacLeod, M.; Poole, J.; Baltenweck, I.; Missohou, A. Net Benefits of Smallholder Dairy Cattle Farms in Senegal Can Be Significantly Increased through the Use of Better Dairy Cattle Breeds and Improved Management Practices. J. Dairy Sci. 2020, 103, 8197–8217. [Google Scholar] [CrossRef]
- Lee, M.; Lee, S.; Park, J.; Seo, S. Clustering and Characterization of the Lactation Curves of Dairy Cows Using K-Medoids Clustering Algorithm. Animals 2020, 10, 1348. [Google Scholar] [CrossRef]
- Shija, D.S.; Okeyo, M.A.; Migwi, P.K.; Kelya, N.J.; Bebe, B.O. Assessing Animal Disease Prevalence and Mortality in Smallholder Dairy Farms under Contrasting Management Practices and Stressful Environments in Tanzania. Open J. Vet. Med. 2022, 12, 117–134. [Google Scholar] [CrossRef]
- ILRI. African Dairy Genetic Gains: Building the Business Case; International Livestock Research Institute: Nairobi, Kenya, 2019; p. 32. [Google Scholar]
- International Committee for Animal Recording (ICAR). ICAR Recording Guidelines; ICAR: Rome, Italy, 2014; Available online: http://www.icar.org (accessed on 1 August 2022).
- Tempelman, R.J. Invited Review: Assessing Experimental Designs for Research Conducted on Commercial Dairies. J. Dairy Sci. 2009, 92, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorup, V.M.; Edwards, D.; Friggens, N.C. On-Farm Estimation of Energy Balance in Dairy Cows Using Only Frequent Body Weight Measurements and Body Condition Score. J. Dairy Sci. 2012, 95, 1784–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal Descriptors of Body Condition Score in Holstein Cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Murray, R.D.; Cartwright, T.A.; Downham, D.Y.; Murray, M.A. Some Maternal Factors Associated with Dystocia in Belgian Blue Cattle. Anim. Sci. 1999, 69, 105–113. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Seo, S.; Fox, D.G.; Ruiz, R. Accounting for Energy and Protein Reserve Changes in Predicting Diet-Allowable Milk Production in Cattle. J. Dairy Sci. 2006, 89, 4795–4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrew, S.M.; Waldo, D.R.; Erdman, R.A. Direct Analysis of Body Composition of Dairy Cows at Three Physiological Stages. J. Dairy Sci. 1994, 77, 3022–3033. [Google Scholar] [CrossRef]
- Komaragiri, M.V.; Erdman, R.A. Factors Affecting Body Tissue Mobilization in Early Lactation Dairy Cows. 1. Effect of Dietary Protein on Mobilization of Body Fat and Protein. J. Dairy Sci. 1997, 80, 929–937. [Google Scholar] [CrossRef]
- Chilliard, Y.; Cissé, M.; Lefaivre, R.; Rémond, B. Body Composition of Dairy Cows According to Lactation Stage, Somatotropin Treatment, and Concentrate Supplementation. J. Dairy Sci. 1991, 74, 3103–3116. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Ferrell, C.L. Lactation Characteristics of Nine Breeds of Cattle Fed Various Quantities of Dietary Energy. J. Anim. Sci. 1992, 70, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/ACCESS® 9.4 Interface to ADABAS: Reference; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Meier, U. A Note on the Power of Fisher’s Least Significant Difference Procedure. Pharm. Stat. 2006, 5, 253–263. [Google Scholar] [CrossRef]
- Bebe, B.O.; Udo, H.M.J.; Rowlands, G.J.; Thorpe, W. Smallholder Dairy Systems in the Kenya Highlands: Cattle Population Dynamics under Increasing Intensification. Livest. Prod. Sci. 2003, 82, 211–221. [Google Scholar] [CrossRef]
- Borman, J.M.; Macmillan, K.L.; Fahey, J. The Potential for Extended Lactations in Victorian Dairying: A Review. Aust. J. Exp. Agric. 2004, 44, 507–519. [Google Scholar] [CrossRef]
- Niozas, G.; Tsousis, G.; Malesios, C.; Steinhöfel, I.; Boscos, C.; Bollwein, H.; Kaske, M. Extended Lactation in High-Yielding Dairy Cows. II. Effects on Milk Production, Udder Health, and Body Measurements. J. Dairy Sci. 2019, 102, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Knight, C.H. Extended Lactation: Turning Theory into Reality. Adv. Dairy Technol. Proc. West. Can. Dairy Semin. 2005, 17, 113–123. [Google Scholar]
- El-Tarabany, M.S.; Roushdy, E.M.; El-Tarabany, A.A.; El-Tarabany, M.S.; Roushdy, E.M.; El-Tarabany, A.A. Production and Health Performance of Holstein, Brown Swiss and Their Crosses under Subtropical Environmental Conditions. Anim. Prod. Sci. 2016, 57, 1137–1143. [Google Scholar] [CrossRef]
- Mahyari, S.A.; Hosseini, S.H.; Mahin, M.; Mahdavi, A.H.; Mahnani, A. Genetic analysis of production and reproduction traits of Isfahan Holstein dairy cows under heat stress conditions. Iran. J. Anim. Sci. Res. 2022, 14, 267–281. [Google Scholar] [CrossRef]
- Alvåsen, K.; Jansson Mörk, M.; Hallén Sandgren, C.; Thomsen, P.T.; Emanuelson, U. Herd-Level Risk Factors Associated with Cow Mortality in Swedish Dairy Herds. J. Dairy Sci. 2012, 95, 4352–4362. [Google Scholar] [CrossRef] [Green Version]
- King, J.M.; Parsons, D.J.; Turnpenny, J.R.; Nyangaga, J.; Bakari, P.; Wathes, C.M. Modelling Energy Metabolism of Friesians in Kenya Smallholdings Shows How Heat Stress and Energy Deficit Constrain Milk Yield and Cow Replacement Rate. Anim. Sci. 2006, 82, 705–716. [Google Scholar] [CrossRef]
- Macciotta, N.P.P.; Dimauro, C.; Steri, R.; Cappio-Borlino, A. Mathematical Modelling of Goat Lactation Curves. In Dairy Goats Feeding and Nutrition; Cannas, A., Pulina, G., Eds.; CABI: Wallingford, UK, 2008; pp. 31–46. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat Stress on Calves and Heifers: A Review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Moran, J.; Doyle, R. Cow Talk: Understanding Dairy Cow Behaviour to Improve Their Welfare on Asian Farms; CSIRO Publishing: Clayton South, VI, Australia, 2015. [Google Scholar]
- Pant, L.P.; Odame, H.H. The Promise of Positive Deviants: Bridging Divides between Scientific Research and Local Practices in Smallholder Agriculture. Knowl. Manag. Dev. J. 2009, 5, 160–172. [Google Scholar] [CrossRef]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.-H.; Zebeli, Q. Invited Review: Practical Feeding Management Recommendations to Mitigate the Risk of Subacute Ruminal Acidosis in Dairy Cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D.V. Heat Stress Interaction with Shade and Cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Val-Arreola, D.; Kebreab, E.; Dijkstra, J.; France, J. Study of the Lactation Curve in Dairy Cattle on Farms in Central Mexico. J. Dairy Sci. 2004, 87, 3789–3799. [Google Scholar] [CrossRef] [Green Version]
- Herve, L.; Quesnel, H.; Veron, M.; Portanguen, J.; Gross, J.J.; Bruckmaier, R.M.; Boutinaud, M. Milk Yield Loss in Response to Feed Restriction Is Associated with Mammary Epithelial Cell Exfoliation in Dairy Cows. J. Dairy Sci. 2019, 102, 2670–2685. [Google Scholar] [CrossRef] [Green Version]
- McClearn, B.; Delaby, L.; Gilliland, T.J.; Guy, C.; Dineen, M.; Coughlan, F.; Buckley, F.; McCarthy, B. An Assessment of the Production, Reproduction, and Functional Traits of Holstein-Friesian, Jersey × Holstein-Friesian, and Norwegian Red × (Jersey × Holstein-Friesian) Cows in Pasture-Based Systems. J. Dairy Sci. 2020, 103, 5200–5214. [Google Scholar] [CrossRef]
- Twine, E.E.; Omore, A.; Githinji, J. Uncertainty in Milk Production by Smallholders in Tanzania and Its Implications for Investment. Int. Food Agribus. Manag. Rev. 2018, 21, 53–72. [Google Scholar] [CrossRef]
- Gustafson, C.R.; VanWormer, E.; Kazwala, R.; Makweta, A.; Paul, G.; Smith, W.; Mazet, J.A. Educating Pastoralists and Extension Officers on Diverse Livestock Diseases in a Changing Environment in Tanzania. Pastoralism 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Bang, N.N.; Gaughan, J.B.; Hayes, B.J.; Lyons, R.E.; Chanh, N.V.; Trach, N.X.; Khang, D.N.; McNeill, D.M. Characteristics of Cowsheds in Vietnamese Smallholder Dairy Farms and Their Associations with Microclimate—A Preliminary Study. Animals 2021, 11, 351. [Google Scholar] [CrossRef]
- Macciotta, N.P.P.; Dimauro, C.; Rassu, S.P.G.; Steri, R.; Pulina, G. The Mathematical Description of Lactation Curves in Dairy Cattle. Ital. J. Anim. Sci. 2011, 10, e51. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.B.; Null, D.J.; VanRaden, P.M. Best Prediction of Yields for Long Lactations. J. Dairy Sci. 2009, 92, 1796–1810. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.A.; Laurence, P.; Pierre, G.; Olivier, M. Lactation Curve Model with Explicit Representation of Perturbations as a Phenotyping Tool for Dairy Livestock Precision Farming. bioRxiv 2019, 661249. [Google Scholar] [CrossRef] [Green Version]
- Dematawewa, C.M.B.; Pearson, R.E.; VanRaden, P.M. Modeling Extended Lactations of Holsteins. J. Dairy Sci. 2007, 90, 3924–3936. [Google Scholar] [CrossRef] [Green Version]
- Gellynck, X.; Kühne, B. Horizontal and Vertical Networks for Innovation in the Traditional Food Sector. Int. J. Food Syst. Dyn. 2010, 2, 123–132. [Google Scholar] [CrossRef]
- Savikurki, A. Positive Deviance in Smallholder Crop-Livestock Farming Systems in Northern Ghana. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2013. [Google Scholar]
- Birhanu, M.Y.; Girma, A.; Puskur, R. Determinants of Success and Intensity of Livestock Feed Technologies Use in Ethiopia: Evidence from a Positive Deviance Perspective. Technol. Forecast. Soc. Chang. 2017, 115, 15–25. [Google Scholar] [CrossRef]
- Sumner, C.L.; von Keyserlingk, M.A.G.; Weary, D.M. Perspectives of Farmers and Veterinarians Concerning Dairy Cattle Welfare. Anim. Front. 2018, 8, 8–13. [Google Scholar] [CrossRef]
- Thapa Shrestha, U.; Adhikari, N.; Kafle, S.; Shrestha, N.; Banjara, M.R.; Steneroden, K.; Bowen, R.; Rijal, K.R.; Adhikari, B.; Ghimire, P. Effect of Deworming on Milk Production in Dairy Cattle and Buffaloes Infected with Gastrointestinal Parasites in the Kavrepalanchowk District of Central Nepal. Vet. Rec. Open 2020, 7, e000380. [Google Scholar] [CrossRef]
- Schumacher, C. Veterinary Services: Improving Accessibility for Smallholder Farmers. GALVmed 2020. Available online: https://www.galvmed.org/veterinary-services-improving-accessibility-for-smallholder-farmers/ (accessed on 1 August 2022).
Factor | Level | Holstein–Friesian Cows | Ayrshire Cows | ||||||
---|---|---|---|---|---|---|---|---|---|
Farms | Cows | Lactations | TD Records | Farms | Cows | Lactations | TD Records | ||
Environment | |||||||||
Low-stress | 76 | 92 | 117 | 564 | 33 | 33 | 45 | 192 | |
High-stress | 187 | 235 | 311 | 2174 | 36 | 37 | 51 | 332 | |
Farm(environment) | |||||||||
Low-stress | |||||||||
Positive deviant | 3 | 5 | 6 | 36 | 3 | 3 | 6 | 15 | |
Typical | 73 | 87 | 111 | 528 | 30 | 30 | 39 | 177 | |
High-stress | |||||||||
Positive deviant | 7 | 9 | 14 | 105 | 1 | 1 | 1 | 5 | |
Typical | 180 | 226 | 297 | 2069 | 35 | 36 | 50 | 327 | |
TOTAL | 263 | 327 | 428 | 2738 | 69 | 70 | 96 | 524 |
Factor | Level | MPt | a | k | ModelMPt | Peak Week | Peak Yield | LMP305 |
---|---|---|---|---|---|---|---|---|
Production environment | ||||||||
Low-stress | 12.08 ± 0.33 | 0.4475 ± 0.0234 | 0.0699 ± 0.0015 | 11.50 ± 0.34 | 15.14 ± 0.27 | 15.25 ± 0.35 | 3338.62 ± 79.81 | |
High-stress | 10.19 ± 0.19 | 0.4616 ± 0.0136 | 0.0703 ± 0.0009 | 9.52 ± 0.20 | 14.66 ± 0.15 | 12.89 ± 0.20 | 2840.03 ± 46.35 | |
Mean difference | 1.89 *** | −0.0141 NS | −0.0003 NS | 1.98 *** | 0.48 NS | 2.36 *** | 498.58 *** | |
Farm(environment) | ||||||||
Low-stress | ||||||||
Positive deviants | 15.00 ± 0.65 | 0.3616 ± 0.0452 | 0.0673 ± 0.0029 | 14.30 ± 0.66 | 15.37 ± 0.51 | 18.26 ± 0.68 | 4008.19 ± 154.45 | |
Typical | 9.17 ± 0.19 | 0.5333 ± 0.0118 | 0.0726 ± 0.0008 | 8.69 ± 0.17 | 14.91 ± 0.13 | 12.24 ± 0.18 | 2669.05 ± 40.33 | |
Mean difference | 5.83 *** | −0.1718 *** | −0.0053 NS | 5.61 *** | 0.46 NS | 6.02 *** | 1339.14 *** | |
High-stress | ||||||||
Positive deviants | 11.81 ± 0.38 | 0.3961 ± 0.0265 | 0.0664 ± 0.0017 | 10.99 ± 0.39 | 15.21 ± 0.30 | 14.59 ± 0.40 | 3275.79 ± 90.44 | |
Typical | 8.57 ± 0.09 | 0.5271 ± 0.0059 | 0.0741 ± 0.0004 | 8.05 ± 0.09 | 14.10 ± 0.07 | 11.20 ± 0.09 | 2404.28 ± 20.37 | |
Mean difference | 3.24 *** | −0.1310 *** | −0.0077 *** | 2.95 *** | 1.11 *** | 3.40 *** | 871.51 *** |
Factor | Level | MPt | a | k | ModelMPt | Peak Week | Peak Yield | LMP305 |
---|---|---|---|---|---|---|---|---|
Production environment | ||||||||
Low-stress | 10.39 ± 0.53 | 0.4398 ± 0.0339 | 0.0740 ± 0.0035 | 9.96 ± 0.54 | 15.09 ± 0.42 | 13.46 ± 0.57 | 2931.09 ± 132.11 | |
High-stress | 9.46 ± 0.89 | 0.5715 ± 0.0568 | 0.0643 ± 0.0059 | 9.17 ± 0.90 | 16.48 ± 0.70 | 11.53 ± 0.96 | 2646.72 ± 221.37 | |
Mean difference | 0.93 NS | −0.1318 * | 0.0098 NS | 0.79 NS | −1.38 NS | 1.94 NS | 284.36 NS | |
Farm(environment) | ||||||||
Low-stress | ||||||||
Positive deviants | 12.60 ± 1.02 | 0.4223 ± 0.0651 | 0.0607 ± 0.0067 | 12.13 ± 1.04 | 17.50 ± 0.81 | 15.48 ± 1.10 | 3539.64 ± 253.68 | |
Typical | 8.19 ± 0.30 | 0.4572 ± 0.0189 | 0.0873 ± 0.0020 | 7.80 ± 0.30 | 12.69 ± 0.23 | 11.44 ± 0.32 | 2322.53 ± 73.85 | |
Mean difference | 4.41 *** | −0.0350 NS | −0.0266 *** | 4.33 *** | 4.81 *** | 4.04 *** | 1217.11 *** | |
High-stress | ||||||||
Positive deviants | 11.20 ± 1.76 | 0.5473 ± 0.1127 | 0.0518 ± 0.0117 | 11.16 ± 1.79 | 19.31 ± 1.39 | 12.98 ± 1.90 | 3141.66 ± 439.39 | |
Typical | 7.72 ± 0.22 | 0.5958 ± 0.0139 | 0.0767 ± 0.0014 | 7.18 ± 0.22 | 13.65 ± 0.17 | 10.07 ± 0.23 | 2151.79 ± 54.33 | |
Mean difference | 3.48 * | −0.0485 NS | −0.0249 * | 3.98 * | 5.66 *** | 2.90 NS | 989.87 * |
Factor | Level | Lactation Length, Days | Persistency, g/day | ||
---|---|---|---|---|---|
Holstein–Friesian | Ayrshire | Holstein–Friesian | Ayrshire | ||
Production environment | |||||
Low-stress | 439.40 ± 31.71 | 469.28 ± 45.30 | −23.15 ± 4.93 | −23.26 ± 4.79 | |
High-stress | 442.48 ± 21.28 | 452.12 ± 76.02 | −25.13 ± 3.31 | −21.49 ± 8.03 | |
Mean difference | −3.08 NS | 17.16 NS | 1.98 NS | −1.77 NS | |
Farm(environment) | |||||
Low-stress | |||||
Positive deviants | 428.20 ± 61.95 | 429.00 ± 86.84 | −15.97 ± 9.63 | −18.31 ± 9.18 | |
Typical | 450.59 ± 13.52 | 509.56 ± 25.80 | −30.34 ± 2.10 | −28.22 ± 2.73 | |
Mean difference | −22.39 NS | −80.56 NS | 14.37 NS | 9.91 NS | |
High-stress | |||||
Positive deviants | 428.64 ± 41.77 | 457.00 ± 150.42 | −23.97 ± 6.49 | −20.41 ± 15.10 | |
Typical | 456.32 ± 8.16 | 447.24 ± 22.18 | −26.29 ± 1.27 | −22.57 ± 2.34 | |
Mean difference | −27.69 NS | 9.76 NS | 2.33 NS | 2.16 NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shija, D.S.; Mwai, O.A.; Ojango, J.M.K.; Komwihangilo, D.M.; Bebe, B.O. Assessing Lactation Curve Characteristics of Dairy Cows Managed under Contrasting Husbandry Practices and Stressful Environments in Tanzania. World 2022, 3, 1032-1052. https://doi.org/10.3390/world3040059
Shija DS, Mwai OA, Ojango JMK, Komwihangilo DM, Bebe BO. Assessing Lactation Curve Characteristics of Dairy Cows Managed under Contrasting Husbandry Practices and Stressful Environments in Tanzania. World. 2022; 3(4):1032-1052. https://doi.org/10.3390/world3040059
Chicago/Turabian StyleShija, Dismas Said, Okeyo A. Mwai, Julie M. K. Ojango, Daniel M. Komwihangilo, and Bockline Omedo Bebe. 2022. "Assessing Lactation Curve Characteristics of Dairy Cows Managed under Contrasting Husbandry Practices and Stressful Environments in Tanzania" World 3, no. 4: 1032-1052. https://doi.org/10.3390/world3040059
APA StyleShija, D. S., Mwai, O. A., Ojango, J. M. K., Komwihangilo, D. M., & Bebe, B. O. (2022). Assessing Lactation Curve Characteristics of Dairy Cows Managed under Contrasting Husbandry Practices and Stressful Environments in Tanzania. World, 3(4), 1032-1052. https://doi.org/10.3390/world3040059