COVID-19 Seroprevalence in Romania: Insights from a Nationwide Antibody Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection and Study Population
2.3. Laboratory Methods
- -
- Analyzer: ALINITY.
- -
- Biological sample: Serum obtained by centrifugation at 3500 RPM for 10 min at 18 °C, processed on the same day or refrigerated for a maximum of 48 h post-collection.
- -
- Cut-off value: 1.4 Index (Negative: <1.4, Positive: ≥1.4).
- -
- Test performance: Specificity > 99.63%, Sensitivity 100% after the 14th day post-symptom onset.
- -
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Demographic Characteristics
3.2. Seroprevalence Results
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
S | Spike |
E | Envelope |
M | Membrane |
N | Nucleocapsid |
POS | post-symptom onset |
CMIA | chemiluminescent microparticle immunoassay |
B | Bucharest |
C | Center |
NE | North-East |
NW | North-West |
S | South |
SE | South-East |
SW | South-West |
W | West |
HCW | healthcare workers |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus-2 |
WHO | World Health Organization |
COVID-19 | Coronavirus Disease 2019 |
References
- World Health Organization (WHO). Public Health Surveillance for COVID-19: Interim Guidance. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-SurveillanceGuidance-2022.2 (accessed on 10 December 2024).
- Taylor, K.M.; Ricks, K.M.; Kuehnert, P.A.; Eick-Cost, A.A.; Scheckelhoff, M.R.; Wiesen, A.R.; Clements, T.L.; Hu, Z.; Zak, S.E.; Olschner, S.P.; et al. Seroprevalence as an indicator of undercounting of COVID-19 cases in a large well-described cohort. AJPM Focus 2023, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Diagnostic Testing for SARS-CoV-2. Available online: https://www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2 (accessed on 10 December 2024).
- Cheng, M.P.; Yansouni, C.P.; Basta, N.E.; Desjardins, M.; Kanjilal, S.; Paquette, K.; Caya, C.; Semret, M.; Quach, C.; Libman, M.; et al. Serodiagnostics for severe acute respiratory syndrome-related coronavirus 2: A narrative review. Ann. Intern. Med. 2020, 173, 450–460. [Google Scholar] [CrossRef]
- Shahgolzari, M.; Yavari, A.; Arjeini, Y.; Miri, S.M.; Darabi, A.; Mozaffari Nejad, A.S.; Keshavarz, M. Immunopathology and immunopathogenesis of COVID-19, what we know and what we should learn. Gene Rep. 2021, 25, 101417. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Nieto-Torres, J.L.; DeDiego, M.L.; Verdiá-Báguena, C.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Fernandez-Delgado, R.; Castaño-Rodriguez, C.; Alcaraz, A.; Torres, J.; Aguilella, V.M.; et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014, 10, e1004077. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Xu, X.; Liao, G.; Chen, Y.; Hu, C.H. Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 1269–1274. [Google Scholar] [CrossRef]
- Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE 2020, 15, e0244126. [Google Scholar] [CrossRef]
- Chen, C.P.; Huang, K.A.; Shih, S.R.; Lin, Y.C.; Cheng, C.Y.; Huang, Y.C.; Lin, T.Y.; Cheng, S.H. Anti-spike antibody response to natural infection with SARS-CoV-2 and its activity against emerging variants. Microbiol. Spectr. 2022, 10, e00743-22. [Google Scholar] [CrossRef]
- Takahashi, T.; Ai, T.; Saito, K.; Nojiri, S.; Takahashi, M.; Igawa, G.; Yamamoto, T.; Khasawneh, A.; Paran, F.J.; Takei, S.; et al. Assessment of antibody dynamics and neutralizing activity using serological assay after SARS-CoV-2 infection and vaccination. PLoS ONE 2023, 18, e0291670. [Google Scholar] [CrossRef] [PubMed]
- Movsisyan, M.; Truzyan, N.; Kasparova, I.; Chopikyan, A.; Sawaqed, R.; Bedross, A.; Sukiasyan, M.; Dilbaryan, K.; Shariff, S.; Kantawala, B.; et al. Tracking the evolution of anti-SARS-CoV-2 antibodies and long-term humoral immunity within 2 years after COVID-19 infection. Sci. Rep. 2024, 14, 13417. [Google Scholar] [CrossRef] [PubMed]
- Grebe, E.; Stone, M.; Spencer, B.R.; Akinseye, A.; Wright, D.; Di Germanio, C.; Bruhn, R.; Zurita, K.G.; Contestable, P.; Green, V.; et al. Detection of nucleocapsid antibodies associated with primary SARS-CoV-2 infection in unvaccinated and vaccinated blood donors. Emerg. Infect. Dis. 2024, 30, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- UNICEF Romania. Vaccinuri Anti-Covid și raportări. Available online: https://www.unicef.org/romania/media/5966/file/Vaccinuri%20antiCovid%20si%20raportar (accessed on 27 January 2025).
- Pistol, A.; Nicolescu, O.; Leustean, M.; Chifiriuc, M.C.; Cucu, I.A.; Furtunescu, F.L.; Janta, D.; Vremera, T.; Mitache, M.M. The Seroprevalence of SARS-CoV-2 antibodies in Romania—First prevalence survey. Biomed. J. Sci. Tech. Res. 2021, 39, 30902–30908. [Google Scholar] [CrossRef]
- Olariu, T.R.; Craciun, A.C.; Vlad, D.C.; Dumitrascu, V.; Marincu, I.; Lupu, M.A. SARS-CoV-2 seroprevalence in western Romania, March to June 2021. Medicina 2022, 58, 35. [Google Scholar] [CrossRef]
- Trofin, F.; Luncă, C.; Păduraru, D.; Anton-Păduraru, D.T.; Buzilă, E.R.; Nastase, E.V.; Lupu, A.; Lupu, V.V.; Dorneanu, O.S. SARS-CoV-2 seroprevalence in children under 5 years old—A regional seroepidemiological study. Medicina 2024, 60, 384. [Google Scholar] [CrossRef]
- Olariu, T.R.; Lighezan, R.; Ursoniu, S.; Craciun, A.C.; Mihu, A.G.; Lupu, M.A. High SARS-CoV-2 seroprevalence in blood donors from Romania after the third COVID-19 pandemic wave. Infect. Dis. 2022, 54, 534–537. [Google Scholar] [CrossRef]
- National Institute of Statistics. Final Results of the Population and Housing Census Round 2021. Available online: https://www.recensamantromania.ro/comunicat-de-presa-primele-rezultate-definitive-ale-recensamantului-populatiei-si-locuintelor-runda-2021 (accessed on 20 December 2024).
- World Health Organization. COVID-19 Seroepidemiology Protocol. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Seroepidemiology-2020.2 (accessed on 10 January 2025).
- EUROSTAT. NUTS—Nomenclature of Territorial Units for Statistics. Available online: https://ec.europa.eu/eurostat/web/nuts (accessed on 20 December 2024).
- Bryan, A.; Pepper, G.; Wener, M.H.; Fink, S.L.; Morishima, C.; Chaudhary, A.; Jerome, K.R.; Mathias, P.C.; Greninger, A.L. Performance Characteristics of the Abbott Architect CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J. Clin. Microbiol. 2020, 58, e00941-20. [Google Scholar] [CrossRef]
- MedLife Health System. Serological IgG Testing for COVID-19. Available online: https://www.medlife.ro/articole-medicale/testare-serologica-igg-pentru-covid-19 (accessed on 20 December 2024).
- Vasile, M.-C.; Arbune, A.-A.; Lupasteanu, G.; Vlase, C.-M.; Popovici, G.-C.; Arbune, M. Epidemiologic and Clinical Characteristics of the First Wave of the COVID-19 Pandemic in Hospitalized Patients from Galați County. J. Clin. Med. 2021, 10, 4210. [Google Scholar] [CrossRef]
- Dascalu, S. The Successes and Failures of the Initial COVID-19 Pandemic Response in Romania. Front. Public Health 2020, 8, 344. [Google Scholar] [CrossRef]
- The Government of Romania. Decision No. 1,031 of November 27, 2020, Regarding the Approval of the Vaccination Strategy Against COVID-19 in Romania. Available online: https://legislatie.just.ro/Public/DetaliiDocument/234094 (accessed on 20 December 2024).
- WHO. The Current COVID-19 Situation. Available online: https://data.who.int/dashboards/covid19/cases?m49=642&n=c (accessed on 10 December 2024).
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; et al. Coronavirus Pandemic (COVID-19). Our World Data 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 10 December 2024).
- Enciu, B.G.; Tănase, A.A.; Drăgănescu, A.C.; Aramă, V.; Pițigoi, D.; Crăciun, M.-D. The COVID-19 Pandemic in Romania: A Comparative Description with Its Border Countries. Healthcare 2022, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. COVID-19: 14th Update; European Parliament: Brussels, Belgium, 15 February 2021. Available online: https://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/COMMITTEES/ENVI/DV/2021/03-15/RRA-covid-19-14th-update-15-feb-2021_EN.pdf (accessed on 29 January 2025).
- European Centre for Disease Prevention and Control (ECDC). Data on Virus Variants: COVID-19 in the EU/EEA.; European Centre for Disease Prevention and Control: Stockholm, Sweden. Available online: https://www.ecdc.europa.eu/en/publications-data/data-virus-variants-covid-19-eueea (accessed on 29 January 2025).
- Ristić, M.; Milosavljević, B.; Vapa, S.; Marković, M.; Petrović, V. Seroprevalence of Antibodies Against SARS-CoV-2 Virus in Northern Serbia (Vojvodina): A Four Consecutive Sentinel Population-Based Survey Study. PLoS ONE 2021, 16, e0254516. [Google Scholar] [CrossRef]
- Markovic-Denic, L.; Zdravkovic, M.; Ercegovac, M.; Djukic, V.; Nikolic, V.; Cujic, D.; Micic, D.; Pekmezovic, T.; Marusic, V.; Popadic, V.; et al. Seroprevalence in Health Care Workers During the Later Phase of the Second Wave: Results of Three Hospitals in Serbia, Prior to Vaccine Administration. J. Infect. Public Health 2022, 15, 739–745. [Google Scholar] [CrossRef]
- Jankovics, I.; Müller, C.; Gönczöl, É.; Visontai, I.; Varga, I.; Lőrincz, M.; Kuti, D.; Hasitz, Á.; Malik, P.; Ursu, K.; et al. Asymptomatic and Mild SARS-CoV-2 Infections in a Hungarian Outpatient Cohort in the First Year of the COVID-19 Pandemic. Trop. Med. Infect. Dis. 2023, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Jazeera, A. Photos: Coronavirus Pandemic—Fourth COVID Wave Rips Through Romania. Available online: https://www.aljazeera.com/gallery/2021/10/10/photos-coronavirus-pandemic-fourth-covid-wave-rips-through-romania (accessed on 27 January 2025).
- Dascalu, S.; Geambasu, O.; Raiu, C.V.; Azoicai, D.; Popovici, E.D.; Apetrei, C. COVID-19 in Romania: What Went Wrong? Front. Public Health 2021, 9, 813941. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Faust, S.N. COVID-19 in Children: Current Evidence and Key Questions. Curr. Opin. Infect. Dis. 2020, 33, 540–547. [Google Scholar] [CrossRef]
- Chen, F.; Tian, Y.; Zhang, L.; Shi, Y. The Role of Children in Household Transmission of COVID-19: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2022, 122, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, R.; Sepidarkish, M.; Mollalo, A.; Parsa, H.; Mahjour, S.; Safarpour, F.; Almukhtar, M.; Mechaal, A.; Chemaitelly, H.; Sartip, B.; et al. SARS-CoV-2 Seroprevalence in Children Worldwide: A Systematic Review and Meta-Analysis. EClinicalMedicine 2023, 56, 101786. [Google Scholar] [CrossRef]
- Nantel, S.; Arnold, C.; Bhatt, M.; Galipeau, Y.; Bourdin, B.; Bowes, J.; Zemek, R.L.; Langlois, M.-A.; Quach, C.; Decaluwe, H.; et al. Differential Adaptive Immune Responses Following SARS-CoV-2 Infection in Children Compared to Adults. medRxiv 2024. [Google Scholar] [CrossRef]
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of Anti-SARS-CoV-2 IgG Antibodies in Geneva, Switzerland (SEROCoV-POP): A Population-Based Study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Commercial Laboratory Seroprevalence Survey Data. Available online: https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv/data (accessed on 13 November 2024).
- Clarke, K.E.N.; Jones, J.M.; Deng, Y.; Nycz, E.; Lee, A.; Iachan, R.; Gundlapalli, A.V.; Hall, A.J.; MacNeil, A. Seroprevalence of Infection-Induced SARS-CoV-2 Antibodies—United States, September 2021–February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Havers, F.P.; Reed, C.; Lim, T.; Montgomery, J.M.; Klena, J.D.; Hall, A.J.; Fry, A.M.; Cannon, D.L.; Chiang, C.-F.; Gibbons, A.; et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23–May 12, 2020. JAMA Intern. Med. 2020, 180, 1576–1586. [Google Scholar] [CrossRef]
- Bergeri, I.; Whelan, M.G.; Ware, H.; Subissi, L.; Nardone, A.; Lewis, H.C.; Li, Z.; Ma, X.; Valenciano, M.; Cheng, B.; et al. Global SARS-CoV-2 Seroprevalence from January 2020 to April 2022: A Systematic Review and Meta-Analysis of Standardized Population-Based Studies. PLoS Med. 2022, 19, e1004107. [Google Scholar] [CrossRef] [PubMed]
- McConnell, D.; Hickey, C.; Bargary, N.; Trela-Larsen, L.; Walsh, C.; Barry, M.; Adams, R. Understanding the Challenges and Uncertainties of Seroprevalence Studies for SARS-CoV-2. Int. J. Environ. Res. Public Health 2021, 18, 4640. [Google Scholar] [CrossRef]
- Lea, C.S.; Simeonsson, K.; Kipp, A.M.; McNeill, C.; Wilcox, L.; Irish, W.; Morris, H.; Diaz, O.M.; Fallon, J.T.; Roper, R.L. Waning of SARS-CoV-2 Seropositivity among Healthy Young Adults over Seven Months. Vaccines 2022, 10, 1532. [Google Scholar] [CrossRef]
- Van Elslande, J.; Oyaert, M.; Lorent, N.; Vande Weygaerde, Y.; Van Pottelbergh, G.; Godderis, L.; Van Ranst, M.; André, E.; Padalko, E.; Lagrou, K.; et al. Lower Persistence of Anti-Nucleocapsid Compared to Anti-Spike Antibodies up to One Year after SARS-CoV-2 Infection. Diagn. Microbiol. Infect. Dis. 2022, 103, 115659. [Google Scholar] [CrossRef] [PubMed]
- Haveri, A.; Ekström, N.; Solastie, A.; Virta, C.; Österlund, P.; Isosaari, E.; Nohynek, H.; Palmu, A.A.; Melin, M. Persistence of Neutralizing Antibodies a Year after SARS-CoV-2 Infection in Humans. Eur. J. Immunol. 2021, 51, 3202–3213. [Google Scholar] [CrossRef]
- Poehlein, E.; Rane, M.S.; Frogel, D.; Kulkarni, S.; Gainus, C.; Profeta, A.; Robertson, M.; Nash, D. Presence of SARS-CoV-2 Antibodies Following COVID-19 Diagnosis: A Longitudinal Study of Patients at a Major Urgent Care Provider in New York. Diagn. Microbiol. Infect. Dis. 2022, 103, 115720. [Google Scholar] [CrossRef]
SARS-CoV-2 Antibody Test Results No. | ||||
---|---|---|---|---|
No. of Detectations | No. of Participants (42,482) | Negative (25,478) | Positive (17,004) | Prevalence of Seropositivity (40.02%) |
1 | 36,964 | 22,867 | 14,097 | 38.13% |
2 | 3693 | 1704 | 1989 | 53.85% |
3 | 957 | 459 | 498 | 52.03% |
4 | 433 | 234 | 199 | 45.95% |
5 | 237 | 132 | 105 | 44.30% |
6 | 107 | 46 | 61 | 57.00% |
7 | 37 | 13 | 24 | 64.86% |
8 | 29 | 13 | 16 | 55.17% |
9 | 11 | 6 | 5 | 45.45% |
10 | 7 | 1 | 6 | 85.71% |
11 | 3 | 1 | 2 | 66.66% |
14 | 2 | 0 | 2 | 100% |
16 | 2 | 2 | 0 | 0% |
Age | Prevalence of Seropositivity |
---|---|
0–17 | 1.67% |
18–49 | 19.63% |
50–64 | 10.74% |
65+ | 4.81% |
Variable | SARS-CoV-2 Antibody Test Results No. (%) | p Value | ||
---|---|---|---|---|
Negative 32,553 (63.2%) | Positive 18,980 (36.8%) | Total 51,533 | ||
Sex | 0.001 | |||
Female | 19,568 (63.8%) | 11,121 (36.2%) | 30,689 | |
Male | 12,985 (62.2%) | 7859 (37.8%) | 20,844 | |
Age (yrs) | 0.0001 | |||
0–17 | 1077 (55.6%) | 859 (44.4%) | 1936 | |
18–49 | 21,059 (67.5%) | 10,114 (32.5%) | 31,173 | |
50–64 | 7853 (58.7%) | 5528 (41.3%) | 13,381 | |
65+ | 2564 (50.8%) | 2479 (49.2%) | 5043 | |
Testing period (Year) | 0.0001 | |||
2020 | 11,009 (67.8%) | 5226 (32.2%) | 16,235 | |
2021 | 20,253 (61.1%) | 12,905 (38.9%) | 33,158 | |
2022 | 1212 (60.0%) | 809 (40.0%) | 2021 | |
Regions | 0.0001 | |||
Bucharest | 18,761 (64.3%) | 10,427 (35.7%) | 29,188 | |
Central | 692 (53.7%) | 597 (46.3%) | 1289 | |
North-East | 2200 (63.5%) | 1261 (36.5%) | 3461 | |
North-West | 131 (97.0%) | 4 (3.0%) | 135 | |
South | 3550 (57.1%) | 2663 (42.9%) | 6213 | |
South-East | 5567 (64.2%) | 3094 (35.8%) | 8661 | |
South-West | 1510 (62.7%) | 896 (37.3%) | 2406 | |
West | 131 (82.9%) | 27 (17.1%) | 158 |
Region | Year | ||
---|---|---|---|
2020 | 2021 | 2022 | |
B | 34% | 36% | 38% |
C | 40% | 46% | 43% |
NE | 28% | 43% | 38% |
NW | 3% | ND | ND |
S | 39% | 45% | 40% |
SE | 25% | 40% | 43% |
SW | 33% | 37% | 63% |
W | 17% | 0% | ND |
Age | Region | |||||||
---|---|---|---|---|---|---|---|---|
B | C | NE | NW | S | SE | SW | W | |
0–17 | 1.74% | 1.4% | 1.21% | 0% | 1.43% | 1.56% | 2.62% | 3.16% |
18–49 | 20.11% | 25.68% | 19.36% | 1.48% | 21.63% | 16.45% | 18.54% | 69.62% |
50–64 | 9.64% | 13.73% | 11.1% | 0.74% | 13.5% | 12.19% | 10.47% | 19.62% |
65+ | 4.23% | 5.51% | 4.74% | 0.74% | 6.29% | 5.52% | 5.61% | 7.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodea, R.; Voidăzan, T.S.; Ferencz, L.I.; Ábrám, Z. COVID-19 Seroprevalence in Romania: Insights from a Nationwide Antibody Study. Epidemiologia 2025, 6, 26. https://doi.org/10.3390/epidemiologia6020026
Bodea R, Voidăzan TS, Ferencz LI, Ábrám Z. COVID-19 Seroprevalence in Romania: Insights from a Nationwide Antibody Study. Epidemiologia. 2025; 6(2):26. https://doi.org/10.3390/epidemiologia6020026
Chicago/Turabian StyleBodea, Réka, Toader Septimiu Voidăzan, Lorand Iozsef Ferencz, and Zoltán Ábrám. 2025. "COVID-19 Seroprevalence in Romania: Insights from a Nationwide Antibody Study" Epidemiologia 6, no. 2: 26. https://doi.org/10.3390/epidemiologia6020026
APA StyleBodea, R., Voidăzan, T. S., Ferencz, L. I., & Ábrám, Z. (2025). COVID-19 Seroprevalence in Romania: Insights from a Nationwide Antibody Study. Epidemiologia, 6(2), 26. https://doi.org/10.3390/epidemiologia6020026