Optuna-Optimized Ensemble and Neural Network Models for Static Characteristics Prediction of Active Bearings with Geometric Adjustments
Abstract
1. Introduction
2. Analysis
2.1. Multi-Pad Adjustable Bearing Data
2.2. Machine Learning Models and Approach
2.2.1. Random Forest Regression (RFR)
- Number of trees in the forest (n_estimators): [50, 500],
- Maximum depth of each tree (max_depth): [5, 30],
- Minimum number of samples required to split an internal node (min_samples_split): [2, 10],
- Minimum number of samples required to be at a leaf node (min_samples_leaf): [1, 5].
2.2.2. Extreme Gradient Boosting (XGBoost)
- Number of boosting iterations (n_estimators): [50, 500],
- Maximum tree depth for base learners (max_depth): [3, 20],
- Shrinkage factor to scale step size (learning_rate): [0.005, 0.3],
- Fraction of samples to be used per tree (subsample): [0.5, 1.0],
- Fraction of features used per tree (colsample_bytree): [0.5, 1.0],
- Minimum loss reduction to make a split (gamma): [0, 5]
- L1 regularization term on weights (reg_alpha): [0, 10].
- L2 regularization term on weights (reg_lambda): [1, 10].
2.2.3. Light Gradient Boosting Machine (LightGBM)
- Number of boosting iterations (n_estimators): [50, 500],
- Shrinkage factor to scale step size (learning_rate): [0.005, 0.3],
- Maximum number of leaves per tree (num_leaves): [10, 100],
- Minimum number of data points in a leaf (min_child_samples): [5, 50],
- Fraction of features used per iteration (feature_fraction): [0.5, 1.0].
2.2.4. Artificial Neural Network (ANN)
- Number of neurons in each hidden layer (hidden_layer_size): [1, 100]
- Number of hidden layers (num_layers): [1, 2]
- Optimization algorithm for weight updates (solver): [adam, lbfgs, sgdm]
- L2 regularization parameter (alpha): [10−5, 10−1]
2.3. Optuna—Automatic Hyperparameter Optimization Framework
3. Results and Training Accuracy
3.1. Model Hyperparameter Optimization
- For RFR, min_samples_leaf (the minimum number of samples required to be at a leaf node) parameter overwhelmingly dominated the model’s sensitivity with an importance score of 0.84, suggesting its critical role in determining leaf node purity and thus model complexity.
- In XGBoost, the learning rate and regularization terms (reg_lambda, reg_alpha) had a notable influence, with learning rate being the most impactful (importance score of 0.64), reinforcing the sensitivity of gradient boosting models to learning rate control.
- For LightGBM, both min_child_samples (minimum number of data points in a leaf) (0.30) and learning rate (0.27) were highly influential, followed by num_leaves (maximum number of leaves per tree) and feature_fraction (fraction of features used per iteration). These findings highlight the reliance of LightGBM on leaf-wise tree growth strategy.
- The performance of ANN model was predominantly governed by the choice of solver, with a significant importance score of 0.96. Other parameters had a negligible effect in comparison.
3.2. Performance Evaluation of Machine Learning Models
3.3. Interaction Effects on Static Characteristics of Adjustable Bearing Using Optimized ANN Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
C | Pad clearance (m) |
R | Journal Radius (m) |
e | Journal eccentricity (m), |
F | friction force (N), |
h | Fluid film thickness (m), |
L | Length of bearing (m) |
N’ | Journal speed (rps) |
p | steady state pressures (N/m2), |
Lubricant supply pressures (N/m2) | |
Q | flow leak (m3/s), |
Radj | radial adjustments (m) |
t | time (s) |
Journal load (N), | |
radial load component (N), | |
Transverse load component (N), | |
U | |
x | |
z | |
Bearing pad angle (rad) | |
tilted angle of pads (rad) | |
lubricant viscosity (Ns/m2) | |
Shearing force (N/m2) | |
bearing number, | |
coefficient of friction | |
friction variable, | |
attitude angle (rad) | |
assumed attitude angle (rad) | |
S | Sommerfeld number, |
journal angular velocity (rad/s) |
References
- Santos, I.F.; Russo, F.H. Tilting-Pad Journal Bearings with Electronic Radial Oil Injection. J. Tribol. 1998, 120, 583–594. [Google Scholar] [CrossRef]
- Palazzolo, A.B.; Lin, R.R.; Alexander, R.M.; Kascak, A.F.; Montague, J. Piezoelectric Pushers for Active Vibration Control of Rotating Machinery. J. Vib. Acoust. 1989, 111, 298–305. [Google Scholar] [CrossRef]
- Krodkiewski, J.M.; Cen, Y.; Sun, L. Improvement of Stability of Rotor System by Introducing a Hydraulic Damper into an Active Journal Bearing. Int. J. Rotating Mach. 1997, 3, 45–52. [Google Scholar] [CrossRef]
- Santos, I.F. On the future of controllable fluid film bearings. Mech. Ind. 2011, 12, 275–281. [Google Scholar] [CrossRef]
- Santos, I. Controllable Sliding Bearings and Controllable Lubrication Principles—An Overview. Lubricants 2018, 6, 16. [Google Scholar] [CrossRef]
- Nicoletti, R.; Santos, I.F. Linear and non-linear control techniques applied to actively lubricated journal bearings. J. Sound Vib. 2003, 260, 927–947. [Google Scholar] [CrossRef]
- Breńkacz, Ł.; Witanowski, Ł.; Drosińska-Komor, M.; Szewczuk-Krypa, N. Research and applications of active bearings: A state-of-the-art review. Mech. Syst. Signal Process. 2021, 151, 107423. [Google Scholar] [CrossRef]
- Chasalevris, A.; Dohnal, F. A Journal Bearing with Variable Geometry for the Reduction of the Maximum Amplitude During Passage Through Resonance. J. Vib. Acoust. 2012, 134, 061005. [Google Scholar] [CrossRef]
- Sun, L.; Krodkiewski, J.M.; Cen, Y. Self-Tuning Adaptive Control of Forced Vibration in Rotor Systems using an Active Journal Bearing. J. Sound Vib. 1998, 213, 1–14. [Google Scholar] [CrossRef]
- Santos, I.F. On the Adjusting of the Dynamic Coefficients of Tilting-Pad Journal Bearings. Tribol. Trans. 1995, 38, 700–706. [Google Scholar] [CrossRef]
- Deckler, D.C.; Veillette, R.J.; Braun, M.J.; Choy, F.K. Simulation and Control of an Active Tilting-Pad Journal Bearing. Tribol. Trans. 2004, 47, 440–458. [Google Scholar] [CrossRef]
- Cai, Z.; de Queiroz, M.S.; Khonsari, M.M. Adaptive control of active tilting-pad bearings. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 4, pp. 2907–2912. [Google Scholar]
- Wu, A.; De Queiroz, M. A New Active Tilting-Pad Bearing: Nonlinear Modeling and Feedback Control. Tribol. Trans. 2010, 53, 755–763. [Google Scholar] [CrossRef]
- Varela, A.C.; García, A.B.; Santos, I.F. Modelling of LEG tilting pad journal bearings with active lubrication. Tribol. Int. 2017, 107, 250–263. [Google Scholar] [CrossRef]
- Salazar, J.G.; Santos, I.F. Active tilting-pad journal bearings supporting flexible rotors: Part I—The hybrid lubrication. Tribol. Int. 2017, 107, 94–105. [Google Scholar] [CrossRef]
- Salazar, J.G.; Santos, I.F. Active tilting-pad journal bearings supporting flexible rotors: Part II—The model-based feedback-controlled lubrication. Tribol. Int. 2017, 107, 106–115. [Google Scholar] [CrossRef]
- Urreta, H.; Leicht, Z.; Sanchez, A.; Agirre, A.; Kuzhir, P.; Magnac, G. Hydrodynamic Bearing Lubricated with Magnetic Fluids. J. Intell. Mater. Syst. Struct. 2010, 21, 1491–1499. [Google Scholar] [CrossRef]
- Urreta, H.; Aguirre, G.; Kuzhir, P.; Lopez de Lacalle, L.N. Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools. J. Intell. Mater. Syst. Struct. 2019, 30, 2257–2271. [Google Scholar] [CrossRef]
- Bompos, D.A.; Nikolakopoulos, P.G. CFD simulation of magnetorheological fluid journal bearings. Simul. Model. Pract. Theory 2011, 19, 1035–1060. [Google Scholar] [CrossRef]
- Bompos, D.A.; Nikolakopoulos, P.G. Experimental and Analytical Investigations of Dynamic Characteristics of Magnetorheological and Nanomagnetorheological Fluid Film Journal Bearing. J. Vib. Acoust. 2016, 138, 031012. [Google Scholar] [CrossRef]
- Bompos, D.A.; Nikolakopoulos, P.G. Rotordynamic Analysis of a Shaft Using Magnetorheological and Nanomagnetorheological Fluid Journal Bearings. Tribol. Trans. 2016, 59, 108–118. [Google Scholar] [CrossRef]
- Chasalevris, A.; Dohnal, F. Vibration quenching in a large scale rotor-bearing system using journal bearings with variable geometry. J. Sound Vib. 2014, 333, 2087–2099. [Google Scholar] [CrossRef]
- Chasalevris, A.; Dohnal, F. Improving stability and operation of turbine rotors using adjustable journal bearings. Tribol. Int. 2016, 104, 369–382. [Google Scholar] [CrossRef]
- Chasalevris, A.; Dohnal, F. Modal interaction and vibration suppression in industrial turbines using adjustable journal bearings. J. Phys. Conf. Ser. 2016, 744, 012156. [Google Scholar] [CrossRef]
- Martin, J.K.; Parkins, D.W. Theoretical Studies of a Continuously Adjustable Hydrodynamic Fluid Film Bearing. J. Tribol. 2002, 124, 203–211. [Google Scholar] [CrossRef]
- Martin, J.K. Measuring the performance of a novel fluid film bearing supporting a rotor on a stationary shaft, by non-contacting means. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 2004, 218, 143–151. [Google Scholar] [CrossRef]
- Pai, R.; Parkins, D.W. Performance Characteristics of an Innovative Journal Bearing with Adjustable Bearing Elements. J. Tribol. 2018, 140, 041705. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, Y.; Xu, H.; Pei, S.; Zhang, L. An experimental study on vibration suppression of adjustable elliptical journal bearing-rotor system in various vibration states. Mech. Syst. Signal Process. 2020, 141, 106477. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Zhang, L.; Xing, Y.; Guo, Y. Vibration suppression mechanism research of adjustable elliptical journal bearing under synchronous unbalance load. Tribol. Int. 2019, 132, 185–198. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H. Effect of radial clearance on the dynamic behavior of adjustable journal bearings in turbulent and laminar flow regimes. AIP Adv. 2023, 13, 025362. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Zhang, S.; Pei, S. Enhancing the stability of rotating machinery using a lower pad adjustable journal bearing. SN Appl. Sci. 2019, 1, 420. [Google Scholar] [CrossRef]
- Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.; et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data Min. Knowl. Discov. 2023, 13, e1484. [Google Scholar] [CrossRef]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. (Eds.) Automated Machine Learning; The Springer Series on Challenges in Machine Learning; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-05317-8. [Google Scholar]
- Katsaros, K.P.; Nikolakopoulos, P.G. Performance Prediction Model for Hydrodynamically Lubricated Tilting Pad Thrust Bearings Operating under Incomplete Oil Film with the Combination of Numerical and Machine-Learning Techniques. Lubricants 2023, 11, 113. [Google Scholar] [CrossRef]
- Moschopoulos, M.; Rossopoulos, G.N.; Papadopoulos, C.I. Journal Bearing Performance Prediction Using Machine Learning and Octave-Band Signal Analysis of Sound and Vibration Measurements. Pol. Marit. Res. 2021, 28, 137–149. [Google Scholar] [CrossRef]
- Li, S.; Babin, A.; Shutin, D.; Kazakov, Y.; Liu, Y.; Chen, Z.; Savin, L. Active hybrid journal bearings with lubrication control: Towards machine learning. Tribol. Int. 2022, 175, 107805. [Google Scholar] [CrossRef]
- Hess, N.; Shang, L. Development of a Machine Learning Model for Elastohydrodynamic Pressure Prediction in Journal Bearings. J. Tribol. 2022, 144, 081603. [Google Scholar] [CrossRef]
- Ravindra, K.G.; Rudresh, B.M.; Prasanna Kumar, M.K.; Kumar, P. Optimization of design parameters to evaluate the performance of journal bearing: ANN approach. Mater. Today Proc. 2022, 54, 171–178. [Google Scholar] [CrossRef]
- Baş, H.; Karabacak, Y.E. Machine learning-based prediction of friction torque and friction coefficient in statically loaded radial journal bearings. Tribol. Int. 2023, 186, 108592. [Google Scholar] [CrossRef]
- Shutin, D.; Fetisov, A.; Savin, L. Optimization of Journal Bearings Considering Their Adjustable Design and Rotor Dynamics. In Proceedings of the International Conference on Rotor Dynamics, Beijing, China, 18–21 September 2023; pp. 364–376. [Google Scholar]
- Shutin, D.; Bondarenko, M.; Polyakov, R.; Stebakov, I.; Savin, L. Method for On-Line Remaining Useful Life and Wear Prediction for Adjustable Journal Bearings Utilizing a Combination of Physics-Based and Data-Driven Models: A Numerical Investigation. Lubricants 2023, 11, 33. [Google Scholar] [CrossRef]
- Rossopoulos, G.N.; Papadopoulos, C.I. A journal bearing performance prediction method utilizing a machine learning technique. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 1993–2003. [Google Scholar] [CrossRef]
- Gheller, E.; Chatterton, S.; Panara, D.; Turini, G.; Pennacchi, P. Artificial neural network for tilting pad journal bearing characterization. Tribol. Int. 2023, 188, 108833. [Google Scholar] [CrossRef]
- Badawi, M.B.; Awad, T.H.; El Fahham, I.M. Application of artificial intelligence for the prediction of plain journal bearings performance. Alexandria Eng. J. 2022, 61, 9011–9029. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Singh, A.K. Prediction of maximum pressure of journal bearing using ANN with multiple input parameters. Aust. J. Mech. Eng. 2022, 20, 1069–1078. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Yang, J.; Wu, M.; Yang, A.; Li, J. Optuna-DFNN: An Optuna framework driven deep fuzzy neural network for predicting sintering performance in big data. Alexandria Eng. J. 2024, 97, 100–113. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, W.; Xing, H.; Feng, P.; Sun, J.; Fan, Y. A highly accurate and interpretable gradient boosting machine learning model for predicting permeability in strongly heterogeneous reservoirs using the Optuna framework. J. Geophys. Eng. 2025, 22, 810–823. [Google Scholar] [CrossRef]
- Hariharan, G.; Pai, R. Analysis on the steady state performance of a multi pad externally adjustable fluid film bearing. Ind. Lubr. Tribol. 2019, 71, 803–809. [Google Scholar] [CrossRef]
- Hariharan, G.; Pai, R. Mathematical formulation of a modified film thickness equation for multipad externally adjustable fluid film bearing. Cogent Eng. 2018, 5, 1493672. [Google Scholar] [CrossRef]
- Ganesha, A.; Pai, R.; Rao, S.; Khader, S.A. Multi-objective optimization and significant analysis of bearing element adjustments on the static performance of an innovative adjustable bearing through design of experiment. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1820–1833. [Google Scholar] [CrossRef]
- Bian, C.; Jia, C.; Li, J.; Chen, X.; Wang, P. Rolling bearing fault diagnosis under small sample conditions based on WDCNN-BiLSTM Siamese network. Sci. Rep. 2025, 15, 29591. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.K.; Samikannu, R. Application of Random Forest Algorithm on Feature Subset Selection and Classification and Regression. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT), Tiruchirappalli, India, 2–4 February 2017; pp. 65–68. [Google Scholar]
- Bhat, S.K.; Ranjan, A.; Upadhyaya, Y.S.; Managuli, V. Fatigue strength prediction of Cobalt alloys using material composition and monotonic properties: ML-based approach. Mater. Res. Express 2025, 12, 046505. [Google Scholar] [CrossRef]
- Zhu, J.; Su, Y.; Liu, Z.; Liu, B.; Sun, Y.; Gao, W.; Fu, Y. Real-time biomechanical modelling of the liver using LightGBM model. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2433. [Google Scholar] [CrossRef]
- Deepak, G.D.; Bhat, S.K. Predictive modeling and optimization of pin electrode based cold plasma using machine learning approach. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 2045–2064. [Google Scholar] [CrossRef]
- Doreswamy, D.; Bhat, S.K.; Hiremath, P.; Shreyas, D.S.; Bongale, A. ANN-based predictive modelling of the effect of abrasive water-jet parameters on the surface roughness of AZ31 Mg alloy. Manuf. Rev. 2024, 11, 21. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019; pp. 2623–2631. [Google Scholar]
Parameters | Details |
---|---|
Journal radius | 23.75 mm |
Radial clearance | 0.0425 mm |
L/D ratio | 0.53 |
Pad angle | 48° |
Eccentricity ratios | 0.1–0.67—Negative pad Adjustments 0.1–0.97—Zero pad Adjustments 0.1–1.23—Positive pad Adjustments |
Radial adjustments | |
Tilt angles | |
Speed | 2000 RPM |
Model | Optimized Hyperparameters |
---|---|
Random Forest | n_estimators: 50, max_depth: 17, min_samples_split: 5, min_samples_leaf: 3 |
XGBoost | n_estimators: 217, max_depth: 18, learning_rate: 0.0455, subsample: 0.532, colsample_bytree: 0.683, gamma: 3.76, reg_alpha: 5.87, reg_lambda: 9.39 |
LightGBM | n_estimators: 100, learning_rate: 0.0362, num_leaves: 37, min_child_samples: 9, feature_fraction: 0.951 |
ANN | hidden_layer_size: 30, num_layers: 1, solver: ‘lbfgs’, alpha: 1.80 × 10−5 |
Model | Inference Time per Sample (ms) | Model Size (kB/MB) |
---|---|---|
ANN | 0.35 | 58 kB |
LightGBM | 0.20 | 1.33 MB |
XGBoost | 1.80 | 1.57 MB |
RFR | 1.09 | 421 kB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hariharan, G.; Mallya, R.; Kumar, N.; Doreswamy, D.; Chennegowda, G.M.; Bhat, S.K. Optuna-Optimized Ensemble and Neural Network Models for Static Characteristics Prediction of Active Bearings with Geometric Adjustments. Modelling 2025, 6, 98. https://doi.org/10.3390/modelling6030098
Hariharan G, Mallya R, Kumar N, Doreswamy D, Chennegowda GM, Bhat SK. Optuna-Optimized Ensemble and Neural Network Models for Static Characteristics Prediction of Active Bearings with Geometric Adjustments. Modelling. 2025; 6(3):98. https://doi.org/10.3390/modelling6030098
Chicago/Turabian StyleHariharan, Girish, Ravindra Mallya, Nitesh Kumar, Deepak Doreswamy, Gowrishankar Mandya Chennegowda, and Subraya Krishna Bhat. 2025. "Optuna-Optimized Ensemble and Neural Network Models for Static Characteristics Prediction of Active Bearings with Geometric Adjustments" Modelling 6, no. 3: 98. https://doi.org/10.3390/modelling6030098
APA StyleHariharan, G., Mallya, R., Kumar, N., Doreswamy, D., Chennegowda, G. M., & Bhat, S. K. (2025). Optuna-Optimized Ensemble and Neural Network Models for Static Characteristics Prediction of Active Bearings with Geometric Adjustments. Modelling, 6(3), 98. https://doi.org/10.3390/modelling6030098