Statistical Evaluation of API P-Y Curve Model for Offshore Piles in Cohesionless Soils
Abstract
1. Introduction
2. The API P-Y Curve Method
3. Database of Measured P-Y Curves for Cohesionless Soil
4. Evaluation and Calibration of the API P-Y Curve Method
4.1. Calculation of Model Factor
4.2. Statistical Correlations of Model Factors
4.3. Calibration of the API P-Y Model for Piles in Cohesionless Soils
5. Characterization of the Probabilistic Distribution of Model Factor
6. Conclusions
- (1)
- Based on field test data, the API-recommended p-y curve method is found to overpredict the soil resistance around monopile foundations for offshore wind turbines in cohesionless soils by about 30% on average, with a high dispersion in prediction accuracy reaching 80%. This is risky as the real soil resistance is not as large as the predicted one. While based on laboratory model tests, on the contrary the API p-y curve method underpredicts the soil resistance by about 8% overall, the dispersion in prediction accuracy is still high, i.e., over 60%. Researchers should be cautious when using laboratory-scale tests to validate or develop models intended for full-scale field applications. The prediction accuracies for both field and laboratory test cases are statistically correlated to the predicted values, mainly due to the inherent statistical correlations to the input parameters of pile length, soil friction angle, and depth.
- (2)
- Correction factors expressed as simple equations with two to three empirical constants are introduced to calibrate the current API p-y curve method for the enhancement of prediction accuracy. The calibrated API p-y curve method has mean values of 1.00, suggesting it is unbiased on average. The dispersions in prediction accuracy are about 20% less than that of the original method.
- (3)
- The model factors for both the current and calibrated API p-y curve methods can be treated as lognormal random variables.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
API | American Petroleum Institute |
PISA | Pile–Soil Analysis |
DNV | Det Norske Veritas |
LRFD | Load and resistance factor design |
COV | Coefficient of variation |
References
- Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Adcock, T.; Jiang, Z.; Gao, Z.; Lin, Z.; et al. Foundations of offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, W.; Juang, C.H.; Tang, H.; Hu, X.; Li, Z. Probabilistic analysis of lateral behaviour of offshore wind turbine monopile considering uncertainties of geological model and loads. Comput. Geotech. 2024, 171, 106348. [Google Scholar] [CrossRef]
- Da, Z.; Xiliang, Z.; Jiankun, H.; Qimin, C. Offshore wind energy development in China: Current status and future perspective. Renew. Sustain. Energy Rev. 2011, 15, 4673–4684. [Google Scholar] [CrossRef]
- Bilgili, M.; Alphan, H. Global growth in offshore wind turbine technology. Clean Technol. Environ. Policy 2022, 24, 2215–2227. [Google Scholar] [CrossRef]
- Gupta, B.K.; Basu, D. Offshore wind turbine monopile foundations: Design perspectives. Ocean Eng. 2020, 213, 107514. [Google Scholar] [CrossRef]
- Xue, R.; Bie, S.; Guo, L. P-Y Curve of Small-Spaced Row Piles Subjected to Lateral Loads in Marine Clay. J. Mar. Sci. Technol. 2020, 28, 105–119. [Google Scholar]
- Shin, H.; Cho, S.; Jung, K. Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg. Int. J. Nav. Archit. Ocean Eng. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Vicent, S.; Kim, S.-R.; Hung, L. Effects of long-term cyclic horizontal loading on bucket foundations in saturated loose sand. Appl. Ocean Res. 2019, 91, 101910. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Zhu, B.; Hong, Y. Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand. Ocean Eng. 2018, 155, 88–105. [Google Scholar] [CrossRef]
- Aleem, M.; Bhattacharya, S.; Biswal, S.; Prakhya, G. Chapter 26—Gravity-based foundation for offshore wind turbines. In Wind Energy Engineering, 2nd ed.; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 383–396. [Google Scholar]
- Zhang, J.; Wang, H. Development of offshore wind power and foundation technology for offshore wind turbines in China. Ocean Eng. 2022, 266, 113256. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Yi, Q.; Chen, D. Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 60, 433–449. [Google Scholar] [CrossRef]
- Roddier, D.; Cermelli, C.; Aubault, A.; Weinstein, A. WindFloat: A floating foundation for offshore wind turbines. J. Renew. Sustain. Energy 2010, 2, 033104. [Google Scholar] [CrossRef]
- Sun, Y. Experimental and Numerical Analysis of Horizontal Bearing Characteristics of Extra-Large Diameter Monopiles for Offshore Wind Turbines. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Yu, H.; Zeng, X.; Lian, J. Seismic behavior of offshore wind turbine with suction caisson foundation. In Proceedings of the Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability, Atlanta, Georgia, 23–26 February 2014; pp. 1206–1214. [Google Scholar]
- Zhang, S.; Liu, S.; Ma, H. Research on Horizontal Bearing Capacity of Monopile Supporting Structure of Offshore Wind Turbine Based on Efficient Pile Finit-Element Method. Eng. Mech. 2023, 40, 99–109. [Google Scholar]
- Arany, L.; Bhattacharya, S.; Macdonald, J.; Hogan, S.J. Design of monopiles for offshore wind turbines in 10 steps. Soil Dyn. Earthq. Eng. 2017, 92, 126–152. [Google Scholar] [CrossRef]
- Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Technol. Sci. 2014, 57, 1030–1039. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, S.; Ren, Y.; Chen, R.; Bian, X. Experimental study on cyclic settlement of piles in silt soil and its application in high-speed railway design. Transp. Geotech. 2021, 27, 100496. [Google Scholar] [CrossRef]
- Zafar, U.; Goit, C.S.; Saitoh, M. Experimental and numerical investigations on vertical dynamic pile-to-pile interactions considering soil and interface nonlinearities. Bull. Earthq. Eng. 2022, 20, 3117–3142. [Google Scholar] [CrossRef]
- Ateş, B.; Şadoğlu, E. Experimental Investigation for Group Efficiency of Driven Piles Embedded in Cohesionless Soil. KSCE J. Civ. Eng. 2023, 27, 5123–5134. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Tong, L. A numerical interpretation of the soil-pile interaction for the pile adjacent to an excavation in clay. Tunn. Undergr. Space Technol. 2022, 121, 104344. [Google Scholar] [CrossRef]
- Maatouk, S.; Blanc, M.; Thorel, L. Effect of embedding depth on the monotonic lateral response of monopiles in sand: Centrifuge and numerical modelling. Geotechnique 2022, 74, 1111–1126. [Google Scholar] [CrossRef]
- Li, T.; Liu, B.; Han, Y.; Fu, C.; Sun, Y. Structural analysis of shield machine cutting monopile using p-y curve based finite element method. Comput. Geotech. 2023, 161, 105605. [Google Scholar] [CrossRef]
- Georgiadis, K.; Georgiadis, M. Development of p–y curves for undrained response of piles near slopes. Comput. Geotech. 2012, 40, 53–61. [Google Scholar] [CrossRef]
- Mylonakis, G.; Gazetas, G. Lateral Vibration and Internal Forces of Grouped Piles in Layered Soil. J. Geotech. Geoenviron. Eng. 1999, 125, 16–25. [Google Scholar] [CrossRef]
- Mozaffari, N.; Mesgarnejad, A.; Jhita, P.; McDonald, G. Extended Winkler Model for design of offshore wind turbine large diameter monopiles. Ocean Eng. 2024, 313, 119619. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, J.; Huang, M.; Shi, Z.; Shen, K. Inclusion of small-strain stiffness in monotonic p-y curves for laterally loaded piles in clay. Comput. Geotech. 2022, 150, 104902. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, D.; Liu, J.; Chen, K.; Ning, F.; Wang, T. A unified soil reaction model for laterally loaded monopiles in soft and stiff clays. Comput. Geotech. 2025, 177, 106819. [Google Scholar] [CrossRef]
- Burd, H.J.; Beuckelaers, W.J.A.P.; Byrne, B.W.; Gavin, K.G.; Houlsby, G.T.; Igoe, D.J.P.; Jardine, R.J.; Martin, C.M.; McAdam, R.A.; Wood, A.M.; et al. New data analysis methods for instrumented medium-scale monopile field tests. Geotechnique 2020, 70, 961–969. [Google Scholar] [CrossRef]
- Byrne, B.W.; Houlsby, G.T.; Burd, H.J.; Gavin, K.G.; Igoe, D.J.P.; Jardine, R.J.; Martin, C.M.; McAdam, R.A.; Potts, D.M.; Taborda, D.M.G.; et al. PISA design model for monopiles for offshore wind turbines: Application to a stiff glacial clay till. Geotechnique 2020, 70, 1030–1047. [Google Scholar] [CrossRef]
- API. Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Design; API: Washington, DC, USA, 2010. [Google Scholar]
- DNV-ST-N001; Marine Operations and Marine Warranty. Veritas DN: Høvik, Norway, 2016.
- JTS 167-4-2012; Code for Pile Foundation of Harbor Engineering. China MoTotPsRo: Taipei, Taiwan, 2012.
- McClelland, B.; Focht, J. Soil Modulus for Laterally Loaded Piles. J. Soil Mech. Found. Div. 1956, 82, 1081-1–1081-22. [Google Scholar] [CrossRef]
- Reese, L.C.; Cox, W.R.; Koop, F.D. Analysis of laterally loaded piles in sand. In Proceedings of the Offshore Technology Conference: OTC, Houston, TX, USA, 5–7 May 1974; p. OTC-2080-MS. [Google Scholar]
- Zhang, X.; Zhao, J.; Xu, C. A method for p-y curve based on Vesic expansion theory. Soil Dyn. Earthq. Eng. 2020, 137, 106291. [Google Scholar] [CrossRef]
- Franke, W.; Rollins, M. Simplified Hybrid p-y Spring Model for Liquefied Soils. J. Geotech. Geoenviron. Eng. 2013, 139, 564–576. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Hong, Y.; He, B.; Zhu, R. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. Appl. Ocean Res. 2020, 101, 102196. [Google Scholar] [CrossRef]
- Jiang, J.; Fu, C.; Wang, S.; Chen, C.; Ou, X. An analytical p-y curve method based on compressive soil pressure model in sand soil. J. Cent. South Univ. 2022, 29, 1987–2004. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Wang, Y.; Gong, W.; Dai, G. Model test study on p-y curve of silt. Bulding Struct. 2022, 52, 2456–2462. [Google Scholar] [CrossRef]
- Li, Q.; Yang, Z.H. P-Y Approach for Laterally Loaded Piles in Frozen Silt. J. Geotech. Geoenviron. Eng. 2017, 143, 04017001. [Google Scholar] [CrossRef]
- Achmus, M.; Abdel-Rahman, K.; Peralta, P. On the Design of Monopile Foundations with Respect to Static and Quasi-Static Cyclic Loading; European Wind Energy Association: Brussels, Belgium, 2005. [Google Scholar]
- Lu, W.; Zhang, G. New p-y curve model considering vertical loading for piles of offshore wind turbine in sand. Ocean Eng. 2020, 203, 107228. [Google Scholar] [CrossRef]
- Hearn, E.; Edgers, L. Finite element analysis of an offshore wind turbine monopile. In Proceedings of the GeoFlorida 2010: Advances in Analysis, Modeling & Design, West Palm Beach, FL, USA, 20–24 February 2010; pp. 1857–1865. [Google Scholar]
- Foye, K.C.; Salgado, R.; Scott, B. Resistance Factors for Use in Shallow Foundation LRFD. J. Geotech. Geoenviron. Eng. 2006, 132, 1208–1218. [Google Scholar] [CrossRef]
- Haldar, S. Reliability-Based Design of Pile Foundations. In Geotechnical Design and Practice: Selected Topics; Ilamparuthi, K., Robinson, R.G., Eds.; Springer: Singapore, 2019; pp. 225–236. [Google Scholar]
- Kulhawy, F.H.; Phoon, K.-K.; Wang, Y. Reliability-based design of foundations-a modern view. In Proceedings of the Geotechnical Engineering State of the Art and Practice: Keynote Lectures from GeoCongress 2012, Oakland, CA, USA, 25–29 March 2012; pp. 102–121. [Google Scholar]
- Wook, C.; Kim, D. Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests. J. Geotech. Geoenviron. Eng. 2016, 142, 04015058. [Google Scholar] [CrossRef]
- Li, W.; Zhu, B.; Yang, M. Static Response of Monopile to Lateral Load in Overconsolidated Dense Sand. J. Geotech. Geoenviron. Eng. 2017, 143, 04017026. [Google Scholar] [CrossRef]
- Lin, H.; Ni, L.; Suleiman Muhannad, T.; Raich, A. Interaction between Laterally Loaded Pile and Surrounding Soil. J. Geotech. Geoenviron. Eng. 2015, 141, 04014119. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, J.; Shen, K.; Huang, M.; Leung, C.F.; Jorgin Tan, Q.W. Bounding-surface-based p-y model for laterally loaded piles in undrained clay. Ocean Eng. 2020, 216, 107997. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, R.; Guo, J.; Kong, L.; Chen, Y. Large-Scale Modeling and Theoretical Investigation of Lateral Collisions on Elevated Piles. J. Geotech. Geoenviron. Eng. 2012, 138, 461–471. [Google Scholar] [CrossRef]
- Cai, W.; Ye, J. Experimental Study on Vertical and Horizontal Load Tests of Large Diameter Pipe Piles in Offshore Engineering. Shanghai Land Resour. 2011, 32, 81–86+92. [Google Scholar]
- Hu, Z.; Zhai, E.; Luo, L.; Yang, X. Study on p-y Curves for Sand Soil of Offshore Wind Turbine Steel Pipe Piles Based on Static Load Tests. Acta Energiae Solaris Sin. 2019, 40, 3571–3577. [Google Scholar]
- Liu, H.; Zhang, D.; Lv, X.; Wang, H. Experimental Study on the Horizontal Bearing Characteristics of Monopiles in Saturated Silt Foundation under Cyclic Loading. Period. Ocean Univ. China 2015, 45, 76–82. [Google Scholar] [CrossRef]
- Wang, W.; Yan, J.; Liu, J. Study on p-y models for large-diameter pile foundation based on in-situ tests of offshore wind power. Chin. J. Geotech. Eng. 2021, 43, 1131–1138. [Google Scholar]
- Wu, R.; Ye, J.; Luo, G.; Shen, X.; Zhang, Q. Experimental Study on Bearing Performance of Large Diameter Steel Pipe Pile Foundations in Radial Sandbar Strata along the Jiangsu Coast. Ocean Eng. 2021, 39, 121–132. [Google Scholar] [CrossRef]
- Wang, T.; Wang, T. Experimental research on silt p-y curves. Rock Soil Mech. 2009, 30, 1343–1346. [Google Scholar]
- Zhu, B.; Zhu, R.; Luo, J.; Chen, R.; Kong, L. Model tests on characteristics of ocean and offshore elevated piles with large lateral deflection. Chin. J. Geotech. Eng. 2010, 32, 521–530. [Google Scholar]
- Wu, T.; Lu, Z.; Dou, D.; Wu, Q. Model Test and Finite Element Analysis of Horizontal Bearing Characteristics of Offshore High Piles. Sci. Technol. Eng. 2013, 13, 7697–7702. [Google Scholar]
- Chortis, G.; Askarinejad, A.; Prendergast, L.J.; Li, Q.; Gavin, K. Influence of scour depth and type on p-y curves for monopiles in sand under monotonic lateral loading in a geotechnical centrifuge. Ocean Eng. 2020, 197, 106838. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Tang, C. Characterisation of geotechnical model uncertainty. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 13, 101–130. [Google Scholar] [CrossRef]
- Tang, C.; Phoon, K.-K.; Yuan, J.; Tao, Y.; Sun, H. Variability in Geostructural Performance Predictions. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2025, 11, 03124003. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Tang, C. Effect of extrapolation on interpreted capacity and model statistics of steel H-piles. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 13, 291–302. [Google Scholar] [CrossRef]
- Phoon, K.-K. The story of statistics in geotechnical engineering. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 14, 3–25. [Google Scholar] [CrossRef]
- Yuan, J.; Lin, P. Reliability analysis of soil nail internal limit states using default FHWA load and resistance models. Mar. Georesour. Geotechnol. 2019, 37, 783–800. [Google Scholar] [CrossRef]
Test Type | Pile | Soil Type | Soil Strength Properties | Monopile Geometry | Measure Point Depth | Installation Method | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(°) | (kN·m−3) | (m) | (m) | t (mm) | Lem (m) | H (m) | ||||||
Field | P1 | fine sand | 33.8 | 21.0 | 78.5 | 2.0 | 30.0 | 47.5 | 14.27 | driven | [57] | |
P2 | fine sand | 33.8 | 21.0 | 82.0 | 2.0 | 30.0 | 50.5 | 15.57 | driven | [57] | ||
P3 | medium-coarse sand | 33.0 | 18.7 | 55.0 | 1.8 | 30.0 | 36.6 | 0.1–1.0 | driven | [55] | ||
P4 | medium-coarse sand | 33.0–35.0 | 18.5–18.7 | 53.0 | 1.9 | 30.0 | 40.0 | 0.1–4.0 | driven | [55] | ||
P5 | silty sand | 32.0–34.0 | 18.3–18.6 | 51.0 | 1.8 | 25.0 | 29.0 | 1.0–5.0 | driven | [58] | ||
P6 | silty sand | 34.0 | 19.0 | 60.0 | 1.2 | 16.0 | 43.0 | 3.5–5.0 | driven | [54] | ||
Model | 75× g level centrifuge test | P7 | sand | 42.0 | 19.5 | 0.85 | 0.080 | 1.2 | 0.41 | 0.02–0.16 | driven | [49] |
1× g level test | P8 | saturated silt | 25.0 | 17.8 | 3.00 | 0.089 | 4.0 | 2.30 | 0.09–0.71 | embedded | [59] | |
1× g level test | P9 | saturated silt | 27.0 | 18.1 | 1.10 | 0.032 | 7.0 | 0.85 | 0.10–0.20 | driven | [56] | |
1× g level test | P10 | sand | 38.0 | 16.5 | 1.52 | 0.102 | 6.4 | 1.40 | 0.17–0.32 | driven | [51] | |
1× g level test | P11 | silty sand | 28.5 | 17.5 | 7.00 | 0.114 | 2.5 | 4.40 | 0.11–0.80 | driven | [60] | |
1× g level test | P12 | saturated silt | 35.5 | 17.5 | 2.00 | 0.165 | 3.0 | 0.85 | 0.10–0.54 | driven | [61] | |
1× g level test | P13 | saturated silt | 30.0 | 19.3 | 4.50 | 0.159 | 4.5 | 3.30 | 0.16–0.80 | driven | [53] | |
1× g level test | P14 | dense sand | 37.0 | 20.0 | 3.00 | 0.340 | 14.0 | 2.20 | 0.34–2.04 | driven | [50] | |
100× g level centrifuge test | P15 | sand | 34.0 | 17.1 | 0.23 | 0.018 | 1.0 | 0.09 | 0.01–0.07 | driven | [62] |
Test Type | (Model Factor, Input Parameter) | Spearman Test | |
---|---|---|---|
p | |||
Field | () | 0.48 > 0.05 | −0.05 |
() | 0.18 > 0.05 | −0.10 | |
() | 0.03 | 0.17 | |
() | 0.01 | 0.20 | |
() | 0.00 | −0.40 | |
() | 0.00 | −0.27 | |
() | 0.00 | 0.22 | |
Model | () | 0.00 | −0.61 |
() | 0.00 | −0.32 | |
() | 0.00 | 0.17 | |
() | 0.04 | 0.11 | |
() | 0.00 | 0.42 | |
() | 0.39 > 0.05 | 0.05 | |
() | 0.00 | −0.53 |
Test Type | Versus | Coefficient of Determination, | ||||
---|---|---|---|---|---|---|
Exponential | Linear | Logarithmic | Quadratic | Power | ||
Field | y/D | 0.035 | 0.034 | 0.037 | 0.036 | 0.000 |
y/L | 0.036 | 0.037 | 0.002 | 0.037 | 0.004 | |
L | 0.100 | 0.107 | 0.109 | 0.108 | 0.096 | |
D | N/A | 0.000 | 0.004 | 0.100 | 0.000 | |
D/L | 0.048 | 0.046 | 0.043 | 0.061 | 0.040 | |
Model | φ | 0.314 | 0.310 | 0.313 | 0.311 | 0.318 |
H/L | 0.123 | 0.119 | 0.095 | 0.122 | N/A | |
y/D | 0.047 | 0.046 | 0.017 | 0.048 | 0.010 | |
y/L | 0.111 | 0.080 | 0.107 | 0.127 | 0.005 | |
L | N/A | 0.153 | 0.226 | 0.158 | 0.184 | |
D/L | 0.192 | 0.192 | 0.194 | 0.192 | 0.186 |
Test Type | Versus | Expression of | Empirical Constant | Calibrated Model Factor | Model Factor | ||
---|---|---|---|---|---|---|---|
Mean | COV | Mean | COV | ||||
Field | = 1.537 = 6.908 = 40.202 | 1.000 | 0.778 | 0.703 | 0.788 | ||
= 0.023 = 2.004 | 1.000 | 0.690 | |||||
= 1.530 = 6.876 | 1.000 | 0.611 | |||||
Laboratory | ) | = 368.905 = 1.699 | 1.000 | 0.564 | 1.077 | 0.624 | |
= 2.067 = 8.238 | 1.000 | 0.557 | |||||
= 0.004 = 0.187 = 0.956 | 1.000 | 0.521 | |||||
= 0.067 = 3.268 | 1.000 | 0.550 | |||||
= 0.426 = 0.738 | 1.000 | 0.553 | |||||
= 0.365 = 0.247 | 1.000 | 0.593 | |||||
= 0.409 = −0.650 | 1.000 | 0.582 | |||||
= 0.002 = 0.857 | 1.000 | 0.603 | |||||
)+ | = 1.326 × 103 = −2.275 = 0.348 = 0.450 | 1.000 | 0.516 | ||||
= 0.679 = −2.083 × 107 = 0.850 = 0.068 | 1.000 | 0.594 | |||||
= −1.163 = 0.257 = 4.925 | 1.000 | 0.496 | |||||
) interacts with | = 89.404 = −1.344 = 0.220 | 1.000 | 0.516 | ||||
= 4.866 = −0.051 = 0.032 | 1.000 | 0.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Yuan, X.; Liu, T. Statistical Evaluation of API P-Y Curve Model for Offshore Piles in Cohesionless Soils. Modelling 2025, 6, 91. https://doi.org/10.3390/modelling6030091
Lin P, Yuan X, Liu T. Statistical Evaluation of API P-Y Curve Model for Offshore Piles in Cohesionless Soils. Modelling. 2025; 6(3):91. https://doi.org/10.3390/modelling6030091
Chicago/Turabian StyleLin, Peiyuan, Xun Yuan, and Tong Liu. 2025. "Statistical Evaluation of API P-Y Curve Model for Offshore Piles in Cohesionless Soils" Modelling 6, no. 3: 91. https://doi.org/10.3390/modelling6030091
APA StyleLin, P., Yuan, X., & Liu, T. (2025). Statistical Evaluation of API P-Y Curve Model for Offshore Piles in Cohesionless Soils. Modelling, 6(3), 91. https://doi.org/10.3390/modelling6030091