Safety of Non-Vitamin K Antagonist Oral Anticoagulant Treatment in Patients with Chronic Kidney Disease and Kidney Transplant Recipients
Abstract
:1. Introduction
2. Oral Anticoagulants
2.1. Warfarin
2.2. Apixaban
2.3. Rivaroxaban
2.4. Dabigatran
3. Immunosuppressive Agents
4. Drug-to-Drug Interactions
4.1. Apixaban
4.2. Rivaroxaban
4.3. Dabigatran
5. Drug-to-Food Interactions and Interactions with Dietary Supplements
6. Safety
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tsai, H.I.; Liu, F.C.; Lee, C.W.; Kuo, C.F.; See, L.C.; Chung, T.T.; Yu, H.P. Cardiovascular disease risk in patients receiving organ transplantation: A national cohort study. Transplant. Int. 2017, 30, 1161. [Google Scholar] [CrossRef] [Green Version]
- Nishank, J.; Reilly, R.F. Clinical Pharmacology of Oral Anticoagulants in Patients with Kidney Disease. CJASN 2019, 14, 278–287. [Google Scholar]
- Olesen, J.B.; Lip, G.Y.H.; Kamper, A.L.; Hommel, K.; Koeber, L.; Lane, D.A.; Lindhardsen, J.; Gislason, G.H.; Torp-Pedersen, C. Stroke and Bleeding in Atrial Fibrillation with Chronic Kidney Disease. N. Eng. J. Med. 2012, 367, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukhari, M.A.; Al-Theaby, A. Efficacy and safety of non-vitamin K antagonist oral anticoagulants post kidney transplantation. World J. Transplant. 2019, 9, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Saver, J.L.; Chang, K.H.; Liao, H.W.; Chang, S.C.; Ovbiagele, B. Low glomerular filtration rate and risk of stroke: Meta-analysis. BMJ 2010, 341, c4249. [Google Scholar] [CrossRef] [Green Version]
- Mace-Brickman, T.; Eddeen, A.B.; Carrero, J.J.; Mark, P.B.; Molnar, A.O.; Lam, N.N.; Zimmerman, D.; Harel, Z.; Sood, M.M. The Risk of Stroke and Stroke Type in Patients with Atrial Fibrillation and Chronic Kidney Disease. Can. J. Kidney Health Dis. 2019, 6, 2054358119892372. [Google Scholar] [CrossRef]
- Lenihan, C.R.; Montez-Rath, M.E.; Scandling, J.D.; Turakhia, M.P.; Winkelmayer, W.C. Outcomes after Kidney Transplantation of Patients Previously Diagnosed with Atrial Fibrillation. Am. J. Transplant. 2013, 1, 1566–1575. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.M.; Aronow, W.S.; Kalen, P.; Adapa, S.; Patel, K.; Goel, A.; Vinnakota, R.; Chugh, S.; Garrick, R. Incidence of thromboembolic stroke and of major bleeding in patients with atrial fibrillation and chronic kidney disease treated with and without warfarin. Int. J. Nephrol. Renovasc. Dis. 2009, 2, 33–37. [Google Scholar]
- Diener, H.C.; Weber, R. Stroke prevention in atrial fibrillation: Do we still need warfarin? Curr. Opin. Neurol. 2012, 25, 27–35. [Google Scholar] [CrossRef]
- Lenihan, C.R.; Montez-Rath, M.E.; Shen, J.I.; Scandling, J.D.; Turakhia, M.P.; Chang, T.I.; Winkelmayer, W.C. Correlates and outcomes of warfarin initiation in kidney transplant recipients newly diagnosed with atrial fibrillation. Nephrol. Dial. Transplant. 2015, 30, 321–329. [Google Scholar] [CrossRef]
- Limdi, N.A.; Nolin, T.D.; Booth, S.L.; Centi, A.; Marques, M.B.; Crowley, M.R.; Allon, M.; Beasley, T.M. Influence of Kidney Function on Risk of Supratherapeutic International Normalized Ratio-Related Hemorrhage in Warfarin Users: A Prospective Cohort Study. Am. J. Kidney Dis. 2015, 65, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanik, M.V.; Irvin, M.R.; Beasley, T.M.; Jacobson, P.A.; Julian, B.A.; Limdi, N.A. Influence of Kidney Transplant Status on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage. Pharmacotherapy 2017, 37, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.E.; Giugliano, R.P.; Patel, M.R.; Abramson, S.; Jardine, M.; Zhao, S.; Perkovic, V.; Maddux, F.W.; Piccini, J.P. Nonvitamin K Anticoagulant Agents in Patients with Advanced Chronic Kidney Disease or on Dialysis with AF. J. Am. Coll. Cardiol. 2016, 67, 2888–2899. [Google Scholar] [CrossRef] [PubMed]
- Benz, A.P.; Eikelboom, J.W.; Yusuf, S.; Hohnloser, S.H.; Kahl, A.; Beresh, H.; Balasubramanian, K.; Healey, J.S.; Connolly, S.J. Long-Term Treatment with Apixaban in Patients with Atrial Fibrillation: Outcomes during the Open-Label Extension following AVERROES. Thromb. Haemost. 2021, 121, 518–528. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.V.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimachi, M.; Furukawa, T.A.; Kmiachi, K.; Goto, Y.; Fukuma, S.; Fukuhura, S. Direct oral anticoagulants versus warfarin for preventing stroke and systemic embolic events among atrial fibrillation patients with chronic kidney disease. Cochrane Database Syst. Rev. 2017, 11, CD011373. [Google Scholar] [CrossRef]
- European Medicines Agency. Eliquis-EPAR-Product-Information. Available online: https://www.ema.europa.eu/en/documents/product-information/eliquis-epar-product-information_en.pdf (accessed on 10 January 2022).
- Malyszko, J.; Lopatowska, P.; Mlodawska, E.; Musialowska, D.; Malyszko, J.S.; Tomaszuk-Kazberuk, A. Atrial fibrillation in kidney transplant recipients: Is there a place for the novel drugs? Nephrol. Dial. Transplant. 2018, 33, 1304–1309. [Google Scholar] [CrossRef]
- Kitchen, S.; Gray, E.; Mackie, I.; Baglin, T.; Makris, M.; BCSH Committee. Measurement of non-Coumarin anticoagulants and their effects on tests of Haemostasis: Guidance from the British Committee for Standards in Haematology. Br. J. Haematol. 2014, 166, 830–841. [Google Scholar] [CrossRef]
- Baglin, T.; Hillarp, A.; Tripodi, A.; Elalamy, I.; Buller, H.; Ageno, W. Measuring Oral Direct Inhibitors (ODIs) of thrombin and factor Xa: A recommendation from the Subcommittee on control of Anticoagulation of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostatis. J. Thromb. Haemost. 2013, 11, 756–760. [Google Scholar] [CrossRef]
- Salerno, D.M.; Tsapepas, D.; Papachristos, A.; Chang, J.H.; Martin, S.; Hardy, M.A.; McKeen, J. Direct oral anticoagulant considerations in solid organ transplantation: A review. Clin. Transplant. 2017, 31, e12873. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueck, W.; Stampfuss, J.; Kubitza, D.; Becka, M. Clinical Pharmacokinetic and Pharmacodynamic Profile of Rivaroxaban. Clin. Pharmacokinet. 2014, 53, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalil, R.S.; Kaboli, P.J.; Liu, X.; Vaughan-Sarrazin, M. Association between Renal Function and Bleeding Risk in Dabigatran after Switching from Warfarin. Am. J. Nephrol. 2016, 44, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin. Pharmacokinet. 2008, 47, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Clemens, A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. Clin. Appl Thromb. Hemost. 2009, 15 (Suppl. S1), 9S–16S. [Google Scholar] [CrossRef]
- Van Ryn, J.; Stangier, J.; Haertter, S.; Liesenfeld, K.H.; Wienen, W.; Feuring, M.; Clemens, A. Dabigatran etexilate—A novel, reversible, oral thrombin inhibitor: Interpretation of coagulation assays and reversal of anticoagulation therapy. Thromb. Haemost. 2010, 103, 1116–1127. [Google Scholar]
- Lindahl, T.L.; Baghaei, F.; Fagerberg Blixter, I.; Gustafsson, K.M.; Stigendal, L.; Sten-Linder, M.; Strandberg, K.; Hillarp, A.; Expert Group on Coagulation of the External Quality Assurance in Laboratory Medicine in Sweden. Effects of the oral, direct thrombin inhibitor dabigatran on five common coagulation assays. Thromb. Haemost. 2011, 105, 371–378. [Google Scholar]
- Božic-Mijowski, M.; Malmström, R.E.; Malovrh, P.; Antovic, J.P.; Vene, N.; Šinigoj, P.; Mavri, A. Diluted thrombin time reliably measures low to intermediate plasma dabigatran concentrations. Ann. Clin. Biochem. 2016, 53 Pt 4, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef]
- Van der Linden, L.; Hias, J.; Vanassche, T. The value and limitations of new oral anticoagulant plasma level assessments. Eur. Heart J. Suppl. 2022, 24 (Suppl. SA), A32–A41. [Google Scholar] [CrossRef] [PubMed]
- Douxfils, J.; Adcock, D.M.; Bates, S.M.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Kawai, Y.; Lindhoff-Last, E.; Kitchen, S.; Gosselin, R.C. 2021 Update of the International Council of Standarization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2021, 121, 1008–1020. [Google Scholar] [PubMed]
- Han, K.; Pillai, V.C.; Venkataramanan, R. Population pharmacokinetics of cyclosporine in transplant recipients. AAPS J. 2013, 15, 901–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Liu, M.; Zhang, W.; Ming, Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr. Drug Metab. 2018, 19, 513–522. [Google Scholar] [CrossRef]
- Mahalati, K.; Kahan, B.D. Clinical Pharmacokinetics of Sirolimus. Clin. Pharmacokinet. 2001, 40, 573–585. [Google Scholar] [CrossRef]
- Staatz, C.E.; Tett, S.E. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin. Pharmacokinet. 2007, 46, 13–58. [Google Scholar] [CrossRef]
- Shen, J.; Townsend, R.; You, X.; Shen, Y.; Zhan, P.; Zhou, Z.; Geng, D.; Wu, D.; McGirr, N.; Soucek, K.; et al. Pharmacokinetics, pharmacodynamics, and immunogenicity of belatacept in adult kidney transplant recipients. Clin. Drug Investig. 2014, 34, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Hodin, S.; Basset, T.; Jacqueroux, E.; Delezay, O.; Clotagatide, A.; Perek, N.; Mismetti, P.; Delavenne, X. In Vitro Comparison of the Role of P-Glycoprotein and breast Cancer Resistance Protein on Direct Oral Anticoagulant Disposition. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 183–191. [Google Scholar] [CrossRef]
- Byon, W.; Garoznik, S.; Boyd, R.A.; Frost, C.E. Apixaban: A Clinical Pharmacokinetic and Pharmacodynamic Review. Clin. Pharmacokinet. 2019, 58, 1265–1279. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Xarelto-EPAR-Product-Information. Available online: https://www.ema.europa.eu/en/documents/product-information/xarelto-epar-product-information_en.pdf (accessed on 10 January 2022).
- Janssen Pharmaceuticals Inc. Xarelto® (Rivaroxaban) Prescribing Information. 2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202439s017lbl.pdf (accessed on 10 January 2022).
- Boehringer Ingelheim Pradaxa® (Dabigatran Etexilate) Prescribing Information. 2021. Available online: https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Pradaxa/Pradaxa.pdf (accessed on 10 January 2022).
- European Medicines Agency. Pradaxa-EPAR-Product-Information. Available online: https://www.ema.europa.eu/en/documents/product-information/pradaxa-epar-product-information_en.pdf (accessed on 10 January 2022).
- Grześk, G.; Rogowicz, D.; Wołowiec, Ł; Ratajczak, A.; Gilewski, W.; Chudzińska, M.; Sinkiewicz, A.; Banach, J. The Clinical Significance of Drug-Food Interactions of Direct Oral Anticoagulants. Int. J. Mol. Sci. 2021, 22, 8531. [Google Scholar] [CrossRef]
- Wallvik, N.; Renlund, H.; Själander, A. Bleeding risk in patients with venous thromboembolic events treated with new oral anticoagulants. J. Thromb. Thrombolysis. 2021, 52, 315–323. [Google Scholar] [CrossRef]
- Bixby, A.L.; Shaikh, S.A.; Naik, A.S.; Cotiguala, L.; McMurry, K.; Samaniego-Picota, M.; Marshall, V.D.; Park, J.M. Safety and efficacy of direct-acting oral anticoagulants versus warfarin in kidney transplant recipients: A retrospective single-center cohort study. Transpl. Int. 2020, 33, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Leon, J.; Sabbah, L.; Aubert, O.; Anglicheau, D.; Delavenne, X.; Zuber, J.; Amrouche, L.; Scemla, A.; Giura, G.; Divard, G.; et al. Efficacy and Safety of Direct Oral Anticoagulants in Kidney Transplantation: A Single-center Pilot Study. Transplantation 2020, 104, 2625–2631. [Google Scholar] [CrossRef] [PubMed]
- Zaitoun, M.F.; El Sheikh, M.; Al Faifi, A.S.; Mahedy, A.W.; El Nazer, W.; El Hennawy, H.M. The Use of Non–Vitamin K Antagonist Oral Anticoagulants in Post-Kidney Transplantation. Single-Center Experience. Transplant. Proc. 2021, 52, 2918–2922. [Google Scholar] [CrossRef]
- Pfrepper, C.; Herber, A.; Weimann, A.; Siegemund, R.; Engelmann, C.; Aehling, N.; Seehofer, D.; Berg, T.; Petros, S. Safety and efficacy of direct oral anticoagulants under long-term immunosuppressive therapy after liver, kidney and pancreas transplantation. Transpl. Int. 2021, 34, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Salerno, D.M.; Thornberg, M.E.; Lange, N.W.; Hedvat, J.; Robbins, H.; Brown, R.S.; Jennings, D.L.; Scheffert, J. Less bleeding associated with apixaban versus other direct acting oral anticoagulation in solid organ transplant recipients. Clin. Transplant. 2021, 35, e14396. [Google Scholar] [CrossRef]
- Matusik, P.T.; Leśniak, W.J.; Heleniak, Z.; Undas, A. Thromboembolism and bleeding in patients with atrial fibrillation and stage 4 chronic kidney disease: Impact of biomarkers. Kardiol. Pol. 2021, 79, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Lodziński, P.; Gawałko, M.; Kraj, L.; Śliwczyński, A.; Maciejewski, C.; Krzowski, B.; Tymińska, A.; Ozierański, K.; Grabowski, M.; Bednarski, J.; et al. District versus academic hospitals: Clinical outcomes of patients with atrial fibrillation. The Multicenter Experience in Atrial Fibrillation Patients Treated with Oral Anticoagulants (CRAFT) study. Pol. Arch. Intern. Med. 2021, 131, 16053. [Google Scholar] [CrossRef]
Apixaban | Rivaroxaban | Dabigatran | |
---|---|---|---|
Mechanism of action | Direct factor Xa inhibition | Direct factor Xa inhibition | Direct factor IIa inhibition |
Indications | Prevention and treatment of VTE Prevention of stroke in individuals suffering from NVAF | Prevention and treatment of VTE Prevention of CV incidents in ASCVDPrevention of stroke and systemic embolism in individuals suffering from NVAF | Prevention and treatment of VTE Prevention of stroke and systemic embolism in individuals suffering from NVAF |
Standard dosage | 5 mg orally twice a day * | 20 mg orally once a day | 150 mg orally twice a day |
Dosage in CKD | 2.5 mg orally twice a day (in CrCl 15–30 mL/min) | 15 mg orally once a day (in CrCl 15–50 mL/min) | 110 mg orally twice a day ** |
Minimal CrCl at which the drug is administered | Not recommended for patients with CrCl < 15 mL/min | Not recommended for patients with CrCl < 15 mL/min | Not recommended for patients with CrCl < 30 mL/min |
Therapeutic effect monitoring | Anti-Xa activity | Anti-Xa activity | TT/dTT (and aPTT) |
Antidote *** | Recombinant modified human factor Xa—andexanet alfa | Recombinant modified human factor Xa—andexanet alfa | Monoclonal antibody against dabigatran—idarucizumab **** |
Cyclosporine [34] | Tacrolimus [35] | Sirolimus [36] | Mofetil Mycophenolate [37] | Belatacept [38] | |
---|---|---|---|---|---|
Mechanism of action | Inhibition of calcineurin and NF-kB pathway, leading to decreased IL-2 production; Inhibition of T-cell activation | Inhibition of calcineurin and NF-kB pathway, leading to decreased IL-2 production; Inhibition of T-cell activation | Inhibition of mTOR protein kinase pathway; Inhibition of T-cell and B-cell activation | Inhibition of inosine monophosphate dehydrogenase; Inhibition of DNA synthesis in lymphocytes | Selective inhibition of T-cell co-stimulation by antigen presenting cells |
Possible mechanism of DDI | Inhibition of CYP3A4, P-gp and BCRP | Inhibition of CYP3A4 and P-gp | No interactions with NOACs reported | DDIs mainly related to absorption of the drug, no interactions with NOACs reported | No formal DDIs reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młyński, M.; Sajek, M.; Heleniak, Z.; Dębska-Ślizień, A. Safety of Non-Vitamin K Antagonist Oral Anticoagulant Treatment in Patients with Chronic Kidney Disease and Kidney Transplant Recipients. Transplantology 2022, 3, 208-218. https://doi.org/10.3390/transplantology3030022
Młyński M, Sajek M, Heleniak Z, Dębska-Ślizień A. Safety of Non-Vitamin K Antagonist Oral Anticoagulant Treatment in Patients with Chronic Kidney Disease and Kidney Transplant Recipients. Transplantology. 2022; 3(3):208-218. https://doi.org/10.3390/transplantology3030022
Chicago/Turabian StyleMłyński, Mikołaj, Mikołaj Sajek, Zbigniew Heleniak, and Alicja Dębska-Ślizień. 2022. "Safety of Non-Vitamin K Antagonist Oral Anticoagulant Treatment in Patients with Chronic Kidney Disease and Kidney Transplant Recipients" Transplantology 3, no. 3: 208-218. https://doi.org/10.3390/transplantology3030022