COVID-19 in Patients with Solid Organ Transplantation: A Systematic Review
Abstract
:1. Introduction
1.1. Known Coronaviruses with Fairly Benign Outcomes
1.2. The Highly Pathogenic Coronaviruses
1.3. Route of Transmission
1.4. Severity Stages of COVID-19
1.5. Diagnosis
2. Methods
3. Results
3.1. Lung Transplant Recipients
3.2. Renal Transplant Recipients
3.3. Liver Transplant Recipients
3.4. Heart Transplant Recipients
3.5. Consequences for the Pre- and Post-Transplantation Practice
3.5.1. What Is New in the COVID-19 Pandemic?
3.5.2. Restrictions Concerning Donors, Recipients and Transplantation Centers
3.5.3. Shutdown in Phases: Different Consequences for Different Organs
3.5.4. Risks for Recipients
3.5.5. Risks for Health Care Workers in General
3.5.6. Health Care Workers with Pregnancy
3.5.7. Health Care Workers in Transplant Teams
4. Discussion
4.1. The Potentially Protective Effect of Immunosuppression Relating to COVID-19 Stage III, a Hypothesis Based on Preliminary Observations in SOT
4.2. Atypical Symptoms in SOT Patients with COVID-19
4.3. Secondary Effects of COVID-19 on SOT Patients
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
bilat. | bilateral |
CRP | C-reactive protein |
CT chest | computed tomography of the chest |
ECMO | extracorporal membrane oxygenation |
everol | everolimus |
GGO | ground-glass opacity |
HFOT | high flow oxygen therapy |
HCQ | hydroxochloroquine |
IS Rx | immunosuppressive therapy |
iv | intravenous |
IVIG | intravenous immunoglobulin G |
MMF | mycophenolate mofetil |
MV | mechanical ventilation |
NIV | non-invasive ventilation |
po | per os |
Pred | Prednisone |
rh-GCSF | recombinant human granulocyte colony-stimulating factor |
Tac | tacrolimus |
inh. | inhalation |
References
- Li, L.Q.; Huang, T.; Wang, Y.Q.; Wang, Z.P.; Liang, Y.; Huang, T.B.; Zhang, H.Y.; Sun, W.; Wang, Y. 2019 novel coronavirus patients’ clinical characteristics, discharge rate and fatality rate of meta-analysis. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. Available online: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019)-nCoV) (accessed on 21 April 2020). [CrossRef] [PubMed] [Green Version]
- Van der Hoek, L.; Pyrc, K.; Berkhout, B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 2006, 30, 760–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, X.; Liu, W.; Gan, M.; Zhang, L.; Wang, J.; Zhang, Z.; Zhu, A.; Li, F.; Sun, J.; et al. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg. Microbes Infect. 2020, 9, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Gaunt, E.R.; Hardie, A.; Claas, E.C.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010, 48, 2940–2947. [Google Scholar] [CrossRef] [Green Version]
- Esper, F.; Weibel, C.; Ferguson, D.; Landry, M.L.; Kahn, J.S. Coronavirus HKU1 infection in the United States. Emerg. Infect. Dis. 2006, 12, 775–779. [Google Scholar] [CrossRef]
- Mitchell, A.B.; Glanville, A.R. Coronavirus and chronic lung allograft dysfunction: Hiding in plain sight? Transplantat. Direct. 2018, 4, e371. [Google Scholar] [CrossRef]
- Magnusson, J.; Westin, J.; Magnus Andersson, L.; Lindh, M.; Brittain-Long, R.; Nordén, R.; Riisse, G.C. Viral respiratory tract infection during the first postoperative year is a risk factor for chronic rejection after lung transplantation. Transplant. Direct. 2018, 11, e370. [Google Scholar] [CrossRef]
- Cabeça, T.K.; Passos, A.M.; Granato, C.; Bellei, N. Human coronavirus ocurrence in different populations of Sao Paulo: A comprehensive nine-year study using a pancoronavirus RT-PCR assay. Braz. J. Microbiol. 2013, 44, 335–339. [Google Scholar] [CrossRef] [Green Version]
- WHO. Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS). Available online: https://www.who.int/csr/sars/en/WHOconsensus.pdf (accessed on 30 January 2020).
- WHO. Middle East Respiratory Syndrome (MERS) Background. Available online: https://www.who.int/emergencies/mers-cov/en/ (accessed on 31 January 2020).
- Guo, Z.-D.; Wang, Z.-Y.; Zhang, S.-F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.B.; Dong, Y.Z.; Chi, X.Y.; et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 2020. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, in press. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISHLT. Guidance for Cardiothoracic Transplant- and VAD-Centers. Available online: https://ishlt.org/ishlt/media/documents/SARS-CoV-2_-Guidance-for-Cardiothoracic-Transplant-and-VAD-centers.pdf (accessed on 9 April 2020).
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinack, C.; Hage, R.; Benden, C.; Schuurmans, M.M. Abdominal and pulmonary manifestations of SARS-CoV-2 infection after lung transplantation. Transplantology 2020. submitted. [Google Scholar]
- Li, F.; Cai, J.; Dong, N. First cases of COVID-19 in heart transplantation from China. J. Heart Lung Transplant. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xu, X.; Ma, K.; Yang, J.; Guan, H.; Chen, S.; Chen, Z.; Chen, G. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [Green Version]
- Guillen, E.; Pineiro, G.J.; Revuelta, I.; Rodriguez, D.; Bodro, M.; Moreno, A.; Campistol, J.M.; Diekmann, F.; Ventura-Aguiar, P. Case report of COVID-19 in a kidney transplant recipient: Does immunosuppression alter the clinical presentation? Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Wang, H.; Qin, X.; Zhang, P.; Zhu, L.; Cai, J.; Yuan, Y.; Li, H. Perioperative presentation of COVID-19 disease in a liver transplant recipient. Hepatology 2020. [Google Scholar] [CrossRef] [Green Version]
- Gandolfini, I.; Delsante, M.; Fiaccadori, E.; Zaza, G.; Manenti, L.; Degli Antoni, A.; Peruzzi, L.; Riella, L.V.; Cravedi, P.; Maggiore, U. COVID-19 in kidney transplant recipients. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Manuel, O.; Natori, Y.; Egawa, H.; Grossi, P.; Han, S.H.; Fernández-Ruiz, M.; Humar, A. COVID-19: A global transplant perspective on successfully navigating a pandemic. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Available online: https://who.sprinklr.com/ (accessed on 6 May 2020).
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jih, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. J. Am. Med. Assoc. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.; Ma, S.; Wang, Y.; Cai, Z.; Hu, J.; Wei, N.; Wu, J.; Du, H.; Chen, T.; Li, R.; et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw. Open 2020, 3, e203976. [Google Scholar] [CrossRef] [PubMed]
- Eiche, C.; Birkholz, T.; Jobst, E.; Gall, C.; Prottengeier, J. Well-being and PTSD in German emergendy medical services—A nationwide cross-sectional survey. PLoS ONE 2019, 14, e0220154. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Zu, D.; Gong, Q.; et al. Clinical characteristics and intraunterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet 2020, 395, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Li, L.; Wu, X.; Zheng, D.; Wang, J.; Yang, L.; Zheng, C. Pregnancy and Perinatal Outcomes of Women with Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Analysis. AJR Am. J. Roentgenol. 2020. [Google Scholar] [CrossRef]
- Jiao, J. Under the epidemic situation of COVID-19, should special attention to pregnant women be given? J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Figueiredo, A.S.; Schumacher, A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016, 148, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Al-Haddad, B.J.S.; Oler, E.; Armistead, B.; Elsayed, N.A.; Weinberger, D.R.; Bernier, R.; Burd, I.; Kapur, R.; Jacobsson, B.; Wang, C.; et al. The fetal origins of mental illness. Am. J. Obstet. Gynecol. 2019, 221, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.A.; Graham, A.L. Potential maternal and infant outcomes from coronavirus 2019-nCoV (SARS-CoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections. Viruses 2020, 12, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.M.; Wong, S.F.; Leung, T.N.; Chow, K.M.; Yu, W.C.; Wong, T.Y.; Lai, S.T.; Ho, L.C. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. BJOG 2004, 111, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Schuurmans, M.M.; Isenring, B.D.; Jungo, C.; Boeni, J.; Mueller, N.J.; Kohler, M.; Benden, C. Clinical features and outcomes of influenza infections in lung transplant recipients: A single-season cohort study. Transpl. Infect. Dis. 2014, 16, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Livingston, E.; Bucher, K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA 2020. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.-Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020. [Google Scholar] [CrossRef]
- Russell, B.; Moss, C.; George, G.; Santaolalla, A.; Cope, A.; Papa, S.; Van Hemelrijck, M. Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancer 2020, 14, 1022. [Google Scholar] [CrossRef] [Green Version]
- AlGhamdi, M.; Mushtaq, F.; Awn, N.; Shalhoub, S. MERS CoV infection in two renal transplant recipients: Case report. Am. J. Transplant. 2015, 15, 1101–1104. [Google Scholar] [CrossRef] [Green Version]
- Carbajo-Lozoya, J.; Müller, M.A.; Kallies, S.; Thiel, V.; Drosten, C.; Von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012, 165, 112–117. [Google Scholar] [CrossRef]
- Carbajo-Lozoya, J.; Ma-Lauer, Y.; Malešević, M.; Theuerkorn, M.; Kahlert, V.; Prell, E.; von Brunn, B.; Muth, D.; Baumert, T.F.; Drosten, C.; et al. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res. 2014, 184, 44–53. [Google Scholar] [CrossRef]
- Lin, M.H.; Moses, D.C.; Hsieh, C.H.; Cheng, S.C.; Chen, Y.H.; Sun, C.Y.; Chou, C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res. 2018, 150, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.W.; Cheng, S.C.; Chen, W.Y.; Lin, M.H.; Chuang, S.J.; Cheng, I.H.; Sun, C.Y.; Chou, C.Y. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res. 2015, 115, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis. 2015, 212, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
- Chihrin, S.; Loutfy, M.R. Overview of antiviral and anti-inflammatory treatment for severe acute respiratory syndrome. Expert Rev. Anti Infect. Ther. 2005, 3, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Alekseev, K.; Jung, K.; Vlasova, A.; Hadya, N.; Saif, L.J. Cytokine responses in porcine respiratory coronavirus-infected pigs treated with corticosteroids as a model for severe acute respiratory syndrome. J. Virol. 2008, 82, 4420–4428. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, F.; Xu, M.; Huang, K.; Zhong, W.; Cai, W.; Yin, Z.; Huang, S.; Deng, Z.; Wei, M.; et al. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J. Med. Microbiol. 2003, 53, 715–720. [Google Scholar] [CrossRef]
- Gao, Q.Y.; Chen, Y.X.; Fang, J.Y. 2019 Novel Coronavirus Infection and Gastrointestinal Tract. J. Dig. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
Author, Ref. and Date | Solid Organ Transplanted, Year of Transplant | Age (y) Sex (m/f) | IS Rx | Symptoms | Temp SpO2 CRP CT Chest | Severity Stage (Siddiqi) | Treatment | Outcome |
---|---|---|---|---|---|---|---|---|
Steinack et al. [19] | Lung, 2019 | 55 f | Tac MMF Pred | Nausea Vomiting Diarrhea Dry cough Rhinorrhea | 38.9 96% 77 mg/L 3 nodular lesions | IIA | piperacillin/tazobactam iv | survived hospitalzation 12 days |
Li et al. [20] | Heart, 2003 | 51 m | Tac MMF | intermittent fever chills fatigue poor appetite diarrhea | 38.5 99%--> 75% 18.6 mg/L GGO (bilat.) | IIA --> IIB | levofloxacin iv ribavirin iv moxifloxacin iv ganciclovir iv IVIG methylprednisolone iv moxifloxacin po umifenovir Tac and MMF stopped from day 7–13 | survived, hospitalization 27 days, no mechanical ventilation or ECMO, CT at discharge improved (residual lesions). |
Li et al. [20] | Heart, 2017 | 43 m | Tac MMF | fever (2 days) fatigue poor appetite | 38.5 normal SpO2? 13.4 mg/L GGO (bilat.) | IIA | ceftriaxone iv ganciclovir iv moxifloxacin po umifenovir | survived, hospitalization 11 days, no mechanical ventilation or ECMO |
Zhu L et al. [21] | Kidney, 2008 | 52 m | Tac MMF Pred | fatigue dyspnea chest pain tightness nausea loss of appetite abdominal pain dry cough fever headache | 38.9 96% 30.2 mg/L GGO (bilat.) | IIA | umifenovir methylprednisolone interferon-α inh. IVIG Biapenem iv pantoprazole Tac stopped from day 6–11, reintroduced with 50% reduction for 7 days, followed by normal doses MMF stopped from day 6–11, reintroduced by normal dose after 12 days pred stopped during hospitalization | survived, hospitalization 12 days, no mechanical ventilation or ECMO |
Guillen E et al. [22] | Kidney, 2016 | 50 m | Tac Everol Pred | fever vomiting | 37.4 98% 13.2 mL/L unilateral --> bilat. infiltrate | IIA--> IIB | ceftriaxone azithromycin lopinavir/ritonavir HCQ TAC and everol temporarily stopped due to interactions interferon-β intubation and MV | |
Qin J et al. [23] | Liver, 2020 | 37 m | Tac Pred | unknown | Temp, SpO2 and CRP unknown GGO | IIB | Tac and Pred maintained, gradually titrated to lower doses HFOT Oseltamivir rh-GCSF IVIG | survived, hospitalization 2 months (including liver transplantation) |
Gandolfini I, et al. [24] | Kidney, 2010 | 75 m | Tac Pred MMF | Fever Cough Myalgia Dyspnea | 38.0 SpO2 and CRP unknown GGO | IIB | NIV HCQ Lopinavir-ritonavir or darunavir-cobicistat | died |
Gandolfini I, et al. [24] | Kidney, 2019 | 52 f | Tac Pred MMF | Fever Cough Myalgia Dyspnea | 39.0 SpO2 and CRP unknown GGO | IIB | NIV HCQ Lopinavir-ritonavir or darunavir-cobicistat Colchicine | alive |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hage, R.; Steinack, C.; Benden, C.; Schuurmans, M.M. COVID-19 in Patients with Solid Organ Transplantation: A Systematic Review. Transplantology 2020, 1, 1-15. https://doi.org/10.3390/transplantology1010001
Hage R, Steinack C, Benden C, Schuurmans MM. COVID-19 in Patients with Solid Organ Transplantation: A Systematic Review. Transplantology. 2020; 1(1):1-15. https://doi.org/10.3390/transplantology1010001
Chicago/Turabian StyleHage, René, Carolin Steinack, Christian Benden, and Macé M. Schuurmans. 2020. "COVID-19 in Patients with Solid Organ Transplantation: A Systematic Review" Transplantology 1, no. 1: 1-15. https://doi.org/10.3390/transplantology1010001