Electric Control of the In-Plane Deflection of Laser Beam Pairs within a Photonic Slab Waveguide
Abstract
:1. Introduction
2. Results and Discussion
2.1. A Concept for Detrapping a Symmetric Beam Pair from a Slab Waveguide after Controlled In-Plane Deflection
- Trapping
- Deflection
- Detrapping
2.2. Visualizing the Impact of Grating Geometry on the In-Plane Deflection of Beam Pairs
2.3. Experimental Observation of Controlled Deflection
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, K.K.; Bruzewicz, C.D.; Mcconnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength Integrated Photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, Y.; Lu, L.; Ding, Y.; Cusano, A.; Fan, J.A.; Hu, Q.; Wang, K.; Xie, Z.; Liu, Z.; et al. Optical Meta-Waveguides for Integrated Photonics and Beyond. Light. Sci. Appl. 2021, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liao, E.; Chen, R.; Shin-Tson, W. Liquid-Crystal-on-Silicon for Augmented Reality Displays. Appl. Sci. 2018, 8, 2366. [Google Scholar] [CrossRef]
- Smalley, D.E.; Smithwick, Q.Y.J.; Bove, V.M.; Barabas, J.; Jolly, S. Anisotropic Leaky-Mode Modulator for Holographic Video Displays. Nature 2013, 498, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jeong, B.G.; Kim, S.I.; Lee, D.; Kim, J.; Shin, C.; Lee, C.B.; Otsuka, T.; Kyoung, J.; Kim, S.; et al. All-Solid-State Spatial Light Modulator with Independent Phase and Amplitude Control for Three-Dimensional LiDAR Applications. Nat. Nanotechnol. 2021, 16, 69–76. [Google Scholar] [CrossRef]
- Van Kessel, P.; Hornbeck, L.; Meier, R.; Douglass, M. MEMS-Based Projection Display. SPIE Crit. Rev. 1989, 1150, 86–102. [Google Scholar] [CrossRef]
- Kruger, S.; Kamps, J.; Wernicke, G.; Gruber, H.; Demoi, N.; Dürr, M.; Teiwes, S. Spatial Light Modulator System for the Application as Dynamic Diffractive Element and in Optical Image Processing. In Proceedings of the Diffractive/Holographic Technologies and Spatial Light Modulators VII, San Jose, CA, USA, 10 March 2000; p. 3951. [Google Scholar]
- Dobosz, M. Reflection Techniques of Continuous Laser Beam Deflection—A Comprehensive Overview. Precis. Eng. 2024, 88, 644–655. [Google Scholar] [CrossRef]
- Johnson, K.M.; McKnight, D.J.; Underwood, I. Smart Spatial Light Modulators Using Liquid Crystals on Silicon. IEEE J. Quantum Electron. 1993, 29, 699–714. [Google Scholar] [CrossRef]
- Gu, T.; Kim, H.J.; Rivero-Baleine, C.; Hu, J. Reconfigurable Metasurfaces towards Commercial Success. Nat. Photonics 2023, 17, 48–58. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, H.; Wang, L.; Chen, J.; Chen, X.; Yi, J.; Zhang, A.; Liu, H. Recent Advances in Reconfigurable Metasurfaces: Principle and Applications. Nanomaterials 2023, 13, 534. [Google Scholar] [CrossRef]
- Kim, G.; Kim, S.; Kim, H.; Lee, J.; Badloe, T.; Rho, J. Metasurface-Empowered Spectral and Spatial Light Modulation for Disruptive Holographic Displays. Nanoscale 2022, 14, 4380–4410. [Google Scholar] [CrossRef]
- Li, J.; Yu, P.; Zhang, S.; Liu, N. Electrically-Controlled Digital Metasurface Device for Light Projection Displays. Nat. Commun. 2020, 11, 3574. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ye, C.R.; Khan, S.; Sorger, V.J. Review and Perspective on Ultrafast Wavelength-Size Electro-Optic Modulators. Laser Photonics Rev. 2015, 9, 172–194. [Google Scholar] [CrossRef]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium Niobate Photonic-Crystal Electro-Optic Modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef]
- Shijie, S.; Xueqing, S.; Tianhang, L.; Yuanhua, C.; Zhu, M.; Yu, Q.; Xie, Y.; Xibin, W.; Daming, Z. 1 × 2 Mode-Independent Polymeric Thermo-Optic Switch Based on a Mach–Zehnder Interferometer with a Multimode Interferometer. Opt. Express 2023, 56, 8164–8168. [Google Scholar]
- Wang, Z.; Xiang, M.; Yang, F.; Liu, K.; Bao, J.; Yang, D.; Wang, Y. Ultrafast and High Extinction Ratio 1×4 Electro-Optical Switch Based on Cascaded Dual-Output MZI. IEEE Photonics J. 2023, 15, 1–8. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Huang, Y.; Wu, L.; Zhao, C.; Xiao, M.; Wang, L.; Davidson, R.; Ou, Y.; Little, B.E.; et al. Low-Loss and Polarization Insensitive 32 × 4 Optical Switch for ROADM Applications. Light. Sci. Appl. 2024, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.H.; Zou, J.; Zhang, H.; Shi, Y.Z.; Luo, S.B.; Wang, N.; Cai, H.; Wan, L.X.; Wang, B.; Jiang, X.D.; et al. Space-Efficient Optical Computing with an Integrated Chip Diffractive Neural Network. Nat. Commun. 2022, 13, 1044. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Banerjee, S.; Chakrabarty, K.; Pasricha, S.; Ikdast, M. Analysis of Optical Loss and Crosstalk Noise in MZI-Based Coherent Photonic Neural Networks. J. Light. Technol. 2024, 42, 1558–2213. [Google Scholar] [CrossRef]
- Strzelecki, E.M.; Chen, J.; Lin, F. Optically Addressed Variable-Efficiency Waveguide Grating for Switching Arrays. Opt. Lett. 1990, 15, 1482. [Google Scholar] [CrossRef]
- Henkel, A.; Schumacher, S.O.; Meudt, M.; Knoth, C.; Buchmüller, M.; Görrn, P. High-Contrast Switching of Light Enabled by Zero Diffraction. Adv. Photonics Res. 2023, 4, 2300230. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, M.; Zhang, X.; Feng, X.; Xu, Y.; Chen, X.; Zhang, H.; Xu, Q.; Tian, Z.; Zhang, W.; et al. Coherent Perfect Diffraction in Metagratings. Adv. Mater. 2020, 32, 2002341. [Google Scholar] [CrossRef]
- Kang, M.; Zhang, Z.; Wu, T.; Zhang, X.; Xu, Q.; Krasnok, A.; Han, J.; Alù, A. Coherent Full Polarization Control Based on Bound States in the Continuum. Nat. Commun. 2022, 13, 4536. [Google Scholar] [CrossRef]
- Görrn, P. Waveguide Arrangement and Method for Deflecting at Least One Light Beam or Pair of Light Beams. DE102021127637, 27 April 2023. [Google Scholar]
- Lawrence, J.; Li, L. Modification of the Wettability Characteristics of Polymethyl. Mater. Sci. Eng. A 2001, 303, 142–149. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft Lithography for Micro- and Nanoscale Patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Jakob, T.; Polywka, A.; Stegers, L.; Akdeniz, E.; Kropp, S.; Frorath, M.; Trost, S.; Schneider, T.; Riedl, T.; Görrn, P. Transfer Printing of Electrodes for Organic Devices: Nanoscale versus Macroscale Continuity. Appl. Phys. A 2015, 120, 503–508. [Google Scholar] [CrossRef]
- Lenzo, P.V.; Turner, E.H.; Spencer, E.G.; Ballman, A.A. Electrooptic Coefficients and Elastic-wave Propagation in Single-domain Ferroelectric Lithium Tantalate. Appl. Phys. Lett. 2004, 8, 81–82. [Google Scholar] [CrossRef]
- Wang, F. Calculation of the Electro-Optical and Nonlinear Optical Coefficients of Ferroelectric Materials from Their Linear Properties. Phys. Rev. B 1999, 59, 9733–9736. [Google Scholar] [CrossRef]
- Kurahashi, N.; Runkel, M.; Kreusel, C.; Schiffer, M.; Maschwitz, T.; Kraus, T.; Brinkmann, K.O.; Heiderhoff, R.; Buchmüller, M.; Schumacher, S.O.; et al. Distributed Feedback Lasing in Thermally Imprinted Phase—Stabilized CsPbI 3 Thin Films. Adv. Funct. Mater. 2024, 2405976. [Google Scholar] [CrossRef]
- Mayer, A.; Haeger, T.; Runkel, M.; Staabs, J.; Rond, J.; van gen Hassend, F.; Görrn, P.; Riedl, T.; Scheer, H.-C. Direct Patterning of Methylammonium Lead Bromide Perovskites by Thermal Imprint. Appl. Phys. A 2022, 128, 399. [Google Scholar] [CrossRef]
- Guo, L.J. Nanoimprint Lithography: Methods and Material Requirements. Adv. Mater. 2007, 19, 495–513. [Google Scholar] [CrossRef]
- Bongu, S.R.; Buchmüller, M.; Neumaier, D.; Görrn, P. Introducing Optical Nonlinearity in PDMS Using Organic Solvent Swelling. Optics 2024, 5, 66–75. [Google Scholar] [CrossRef]
- Bongu, S.R.; Buchmüller, M.; Neumaier, D.; Görrn, P. Electric Control of Thermal Contributions to the Nonlinear Optical Properties of Nitrobenzene. Adv. Phys. Res. 2024, 3, 2300053. [Google Scholar] [CrossRef]
- Dalton, L.R. Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Carrillo-Delgado, C.; Arano-Martínez, J.A.; Vidales-Hurtado, M.A.; Torres-Torres, D.; Martínez-González, C.L.; Torres-Torres, C. Electrically Induced Directional Self-Focusing in Electrochromic NiO Thin Solid Films. J. Mater. Sci. Mater. Electron. 2023, 34, 953. [Google Scholar] [CrossRef]
- Buchmüller, M.; Shutsko, I.; Schumacher, S.O.; Görrn, P. Harnessing Short-Range Surface Plasmons in Planar Silver Films via Disorder-Engineered Metasurfaces. ACS Appl. Opt. Mater. 2023, 1, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Shutsko, I.; Buchmüller, M.; Meudt, M.; Görrn, P. Plasmon-Induced Disorder Engineering for Robust Optical Sensors. Adv. Opt. Mater. 2022, 10, 2102783. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henkel, A.; Knoth, C.; Buchmüller, M.; Görrn, P. Electric Control of the In-Plane Deflection of Laser Beam Pairs within a Photonic Slab Waveguide. Optics 2024, 5, 342-352. https://doi.org/10.3390/opt5030025
Henkel A, Knoth C, Buchmüller M, Görrn P. Electric Control of the In-Plane Deflection of Laser Beam Pairs within a Photonic Slab Waveguide. Optics. 2024; 5(3):342-352. https://doi.org/10.3390/opt5030025
Chicago/Turabian StyleHenkel, Andreas, Christopher Knoth, Maximilian Buchmüller, and Patrick Görrn. 2024. "Electric Control of the In-Plane Deflection of Laser Beam Pairs within a Photonic Slab Waveguide" Optics 5, no. 3: 342-352. https://doi.org/10.3390/opt5030025
APA StyleHenkel, A., Knoth, C., Buchmüller, M., & Görrn, P. (2024). Electric Control of the In-Plane Deflection of Laser Beam Pairs within a Photonic Slab Waveguide. Optics, 5(3), 342-352. https://doi.org/10.3390/opt5030025