Nature of Photoelectric Effect in a Ge-on-Si SPAD at Ultralow Energy in Incident Pulsed Laser Radiation
Abstract
:1. Introduction
2. Device Design and Characteristics
3. Discussion
- To what extent is Einstein’s model of PE relevant to the processes in such SPADs and observed results?
- If not Einstein’s model, then how can the observed results and their interpretation be made compatible?
3.1. Einstein’s Model and Its Prerequisites
3.2. The Electromagnetic Energy in a Dielectric
3.3. The Effect of Interference
3.4. The Bandgap in a Heavily Doped p-Ge
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Itzler, M.A.; Zbinden, H.; Pan, J.-W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 2015, 4, e286. [Google Scholar] [CrossRef] [Green Version]
- Takesue, H.; Nam, S.W.; Zhang, Q.; Hadfield, R.H.; Honjo, T.; Tamaki, K.; Yamamoto, Y. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 2007, 1, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Buller, G.S.; Warburton, R.E.; Pellegrini, S.; Ng, J.S.; David, J.P.R.; Tan, L.J.J.; Krysa, A.B.; Cova, S. Single-photon avalanche diode detectors for quantum key distribution. IET Optoelectron. 2007, 1, 249–254. [Google Scholar] [CrossRef]
- Xiao, L.; Long, G.L.; Deng, F.G.; Pan, J.W. Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 2004, 69, 052307. [Google Scholar] [CrossRef] [Green Version]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.L. Optical quantum computing. Science 2007, 318, 1567–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2019, 14, 273–284. [Google Scholar] [CrossRef]
- Hall, D.; Liu, Y.-H.; Lo, Y.-H. Single photon avalanche detectors: Prospects of new quenching and gain mechanisms. Nanophotonics 2015, 4, 397–412. [Google Scholar] [CrossRef]
- Hemmati, H.; Biswas, A.; Djordjevic, I.B. Deep space optical communications: Future perspectives and applications. Proc. IEEE 2011, 99, 2020–2039. [Google Scholar] [CrossRef]
- Campbell, J.C. Recent advances in telecommunications avalanche photodiodes. J. Lightwave Tech. 2007, 25, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Niclass, C.; Rochas, A.; Besse, P.-A.; Charbon, E. Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes. IEEE J. Solid State Circuits 2005, 40, 1847–1854. [Google Scholar] [CrossRef] [Green Version]
- Warburton, R.E.; McCarthy, A.; Wallace, A.M.; Hernandez-Marin, S.; Hadfield, R.H.; Nam, S.W.; Buller, G.S. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength. Opt. Lett. 2007, 32, 2266–2268. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, A.M.; Halimi, A.; Lamb, R.A.; Buller, G.S. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express 2017, 25, 11919–11931. [Google Scholar] [CrossRef] [PubMed]
- Tobin, R.; Halimi, A.; McCarthy, A.; Laurenzis, M.; Christnacher, F.; Buller, G.S. Three-dimensional single-photon imaging through obscurants. Opt. Express 2019, 27, 4590–4611. [Google Scholar] [CrossRef]
- Llin, L.F.; Kirdoda, J.; Thorburn, F.; Huddleston, L.L.; Greener, Z.M.; Kuzmenko, K.; Vines, P.; Dumas, D.C.S.; Millar, R.W.; Buller, G.S.; et al. High sensitivity Ge-on-Si single-photon avalanche diode detectors. Opt. Lett. 2020, 45, 6406–6409. [Google Scholar] [CrossRef]
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Buller, G.S.; Collins, R.J. Single-photon generation and detection. Meas. Sci. Technol. 2010, 21, 012002. [Google Scholar] [CrossRef]
- Eisaman, M.D.; Fan, J.; Migdall, A.; Polyakov, S.V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82, 071101. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Lo, Y.-H.; Bitter, M.; Kristjansson, S.; Pan, Z.; Pauchard, A. InGaAs-on-Si single photon avalanche photodetectors. Appl. Phys. Lett. 2004, 85, 1668–1670. [Google Scholar] [CrossRef]
- Warburton, R.E.; Intermite, G.; Myronov, M.; Allred, P.; Leadley, D.R.; Gallacher, K.; Paul, D.J.; Pilgrim, N.J.; Lever, L.J.M.; Ikonic, Z.; et al. Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm. IEEE Trans. Electron Devices 2013, 60, 3807–3813. [Google Scholar] [CrossRef]
- Vines, P.; Kuzmenko, K.; Kirdoda, J.; Dumas, D.C.S.; Mirza, M.M.; Millar, R.W.; Paul, D.J.; Buller, G.S. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 2019, 10, 1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gol’tsman, G.N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 2001, 79, 705–707. [Google Scholar] [CrossRef]
- Einstein, A. Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905, 17, 132–148. [Google Scholar] [CrossRef]
- Kirdoda, J.; Dumas, D.C.S.; Kuzmenko, K.; Vines, P.; Greener, Z.M.; Millar, R.W.; Mirza, M.M.; Buller, G.S.; Paul, D.J. Geiger Mode Ge-on-Si Single-Photon Avalanche Diode Detectors. In Proceedings of the 2019 IEEE 2nd British and Irish Conf. on Optics and Photonics (BICOP), London, UK, 11–13 December 2020. [Google Scholar] [CrossRef]
- Dash, W.; Newman, R. Intrinsic optical absorption in single-crystal germanium and silicon. Phys. Rev. 1955, 99, 1151–1155. [Google Scholar] [CrossRef]
- Bagaev, V.S.; Proshko, G.P.; Shotov, A.P. Infrared absorption in heavily doped germanium. Sov. Phys. Solid State 1963, 4, 2363–2368. [Google Scholar]
- Bonch-Bruevich, V.L.; Kalashnikov, S.G. Physics of Semiconductors; Nauka Press: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Cuttris, D.B. Relation Between Surface Concentration and Average Conductivity in Diffused Layers in Germanium. Bell Syst. Tech. J. 1961, 40, 509–523. [Google Scholar] [CrossRef]
- Tamm, I.E. Basics of Electricity Theory; OGIZ: Moscow, Russia, 1946. (In Russian) [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Willey & sons: New York, NY, USA, 1962. [Google Scholar]
- Lorentz, H.A. The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat; Leipzig B.G.: Teubner, Germany, 1916. [Google Scholar]
- Keldish, L.V.; Proshko, G.P. Infrared absorption in heavily doped germanium. Sov. Phys. Solid State 1964, 5, 2481–2488. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalev, V.I. Nature of Photoelectric Effect in a Ge-on-Si SPAD at Ultralow Energy in Incident Pulsed Laser Radiation. Optics 2021, 2, 45-53. https://doi.org/10.3390/opt2010004
Kovalev VI. Nature of Photoelectric Effect in a Ge-on-Si SPAD at Ultralow Energy in Incident Pulsed Laser Radiation. Optics. 2021; 2(1):45-53. https://doi.org/10.3390/opt2010004
Chicago/Turabian StyleKovalev, Valeri I. 2021. "Nature of Photoelectric Effect in a Ge-on-Si SPAD at Ultralow Energy in Incident Pulsed Laser Radiation" Optics 2, no. 1: 45-53. https://doi.org/10.3390/opt2010004
APA StyleKovalev, V. I. (2021). Nature of Photoelectric Effect in a Ge-on-Si SPAD at Ultralow Energy in Incident Pulsed Laser Radiation. Optics, 2(1), 45-53. https://doi.org/10.3390/opt2010004