Designing Ship Hull Forms Using Generative Adversarial Networks
Abstract
:1. Introduction
2. Generative Adversarial Network
3. Ship Hull-Form Design
3.1. Hull-Form Design Task
3.2. Mathematical Hull Form Dataset
3.3. Generative Model for Ship Hull Design
4. Numerical Experiments
4.1. Experimental Settings
4.2. Training cWGAN-gp Using All Data
4.3. Training cWGAN-gp Using Separate Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsui, S. A new mathematical hull-form with 10-shape parameters for evaluation of ship response in waves. J. Mar. Sci. Technol. 2022, 27, 508–521. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, B.; Liu, Z.; Chang, H.; Cheng, X. NURBS-Based Parametric Design for Ship Hull Form. J. Mar. Sci. Eng. 2022, 10, 686. [Google Scholar] [CrossRef]
- Abt, C.; Bade, S.; Birk, L.; Harries, S. Parametric Hull Form Design—A Step Towards One Week Ship Design. In Practical Design of Ships and Other Floating Structures; Wu, Y.S., Cui, W.C., Zhou, G.J., Eds.; Elsevier Science Ltd.: Oxford, UK, 2001; pp. 67–74. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, D.; Leng, W. Parametric approach to design of hull forms. J. Hydrodyn. Ser. B 2008, 20, 804–810. [Google Scholar] [CrossRef]
- Feng, Y.; el Moctar, O.; Schellin, T.E. Parametric Hull Form Optimization of Containerships for Minimum Resistance in Calm Water and in Waves. J. Mar. Sci. Appl. 2021, 20, 670–693. [Google Scholar] [CrossRef]
- Tahara, Y.; Tohyama, S.; Katsui, T. CFD-based multi-objective optimization method for ship design. Int. J. Numer. Methods Fluids 2006, 52, 499–527. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1178 (accessed on 5 June 2025). [CrossRef]
- Han, S.; Lee, Y.S.; Choi, Y.B. Hydrodynamic hull form optimization using parametric models. J. Mar. Sci. Technol. 2012, 17, 1–17. [Google Scholar] [CrossRef]
- Regenwetter, L.; Nobari, A.H.; Ahmed, F. Deep Generative Models in Engineering Design: A Review. J. Mech. Des. 2022, 144, 071704. [Google Scholar] [CrossRef]
- Chaudhari, A.M.; Selva, D. Evaluating Designer Learning and Performance in Interactive Deep Generative Design. J. Mech. Des. 2023, 145, 051403. [Google Scholar] [CrossRef]
- Shu, D.; Cunningham, J.; Stump, G.; Miller, S.W.; Yukish, M.A.; Simpson, T.W.; Tucker, C.S. 3D Design Using Generative Adversarial Networks and Physics-Based Validation. J. Mech. Des. 2019, 142, 071701. [Google Scholar] [CrossRef]
- Achour, G.; Sung, W.J.; Pinon-Fischer, O.J.; Mavris, D.N. Development of a Conditional Generative Adversarial Network for Airfoil Shape Optimization. In AIAA Scitech 2020 Forum; AIAA: Reston, VA, USA, 2020; p. 2261. [Google Scholar]
- Yonekura, K.; Miyamoto, N.; Suzuki, K. Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-gp. Struct. Multidiscip. Optim. 2022, 65, 173. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; He, C.; Chen, H.; Cheng, R.; Zhai, C.; Zhang, M. An inverse design method for supercritical airfoil based on conditional generative models. Chin. J. Aeronaut. 2022, 35, 62–74. [Google Scholar] [CrossRef]
- Yonekura, K.; Suzuki, K. Data-driven design exploration method using conditional variational autoencoder for airfoil design. Struct. Multidiscip. Optim. 2021, 64, 613–624. [Google Scholar] [CrossRef]
- Yonekura, K.; Wada, K.; Suzuki, K. Generating various airfoil shapes with required lift coefficient using conditional variational autoencoders—Novel shapes by combining NACA and Joukowski airfoils. Eng. Appl. Artif. Intell. 2021, 108, 104560. [Google Scholar] [CrossRef]
- Khan, S.; Goucher-Lambert, K.; Kostas, K.; Kaklis, P. ShipHullGAN: A generic parametric modeller for ship hull design using deep convolutional generative model. Comput. Methods Appl. Mech. Eng. 2023, 411, 116051. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Wada, K.; Suzuki, K.; Yonekura, K. Physics-guided training of GAN to improve accuracy in airfoil design synthesis. Comput. Methods Appl. Mech. Eng. 2024, 421, 116746. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.; Yang, X.; Chen, T.; Cheng, X.; Cheng, W. From Sample Poverty to Rich Feature Learning: A New Metric Learning Method for Few-Shot Classification. IEEE Access 2024, 12, 124990–125002. [Google Scholar] [CrossRef]
- Yonekura, K.; Aoki, R.; Suzuki, K. Quantification and reduction of uncertainty in aerodynamic performance of GAN-generated airfoil shapes using MC dropouts. Theor. Appl. Mech. Lett. 2025, 15, 100504. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of uncertainty in deep neural networks. Theor. Appl. Mech. Lett. 2023, 56, 1513–1589. [Google Scholar] [CrossRef]
- Kim, J.H.; Roh, M.I.; Yeo, I.C. Hull form optimization of fully parameterized small ships using characteristic curves and deep neural networks. Int. J. Nav. Archit. Ocean. Eng. 2024, 16, 100596. [Google Scholar] [CrossRef]
- Wei, Y.; Pan, G.; Paladaechanan, P.; Wan, D. A novel hull form optimization framework based on multi-fidelity deep neural network. J. Hydrodyn. 2025, 37, 149–159. [Google Scholar] [CrossRef]
- Bagazinski, N.J.; Ahmed, F. ShipGen: A Diffusion Model for Parametric Ship Hull Generation with Multiple Objectives and Constraints. J. Mar. Sci. Eng. 2023, 11, 2215. [Google Scholar] [CrossRef]
- Yeo, S.J.; Hong, S.Y.; Song, J.H. Deep-reinforcement-learning-based hull form optimization method for stealth submarine design. Int. J. Nav. Archit. Ocean. Eng. 2024, 16, 100595. [Google Scholar] [CrossRef]
- Yonekura, K.; Hattori, H. Framework for design optimization using deep reinforcement learning. Struct. Multidiscip. Optim. 2019, 60, 1709–1713. [Google Scholar] [CrossRef]
- Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2017, arXiv:1701.00160. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Arjovsky, M.; Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. arXiv 2017, arXiv:1701.04862. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. arXiv 2017, arXiv:1701.07875v3. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of Wasserstein GANs. arXiv 2017, arXiv:1704.00028. [Google Scholar]
- Prohaska, C. A simple method for the evaluation of the form factor and the low speed wave resistance. In ITTC Resistance Session Brief Summary of Written Contributions; Society of Naval Architects of Japan: Tokyo, Japan, 1966; pp. 65–66. [Google Scholar]
- Matsui, S. Development of mathematical hull form of which principal parameters can be varied methodically. J. Jpn. Soc. Nav. Archit. Ocean. Eng. 2019, 30, 71–78. (In Japanese) [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Nice, France, 2019; pp. 8024–8035. [Google Scholar]
Category | High Speed | Medium Speed | Low Speed |
---|---|---|---|
Design speed | 25 knot | 20 knot | 15 knot |
B/L | |||
d/L | |||
Number of data | 1552 | 1594 | 920 |
Design Speed | MAPE of | MAPE of W | Total |
---|---|---|---|
High speed | 0.03171 | 0.05069 | 0.04120 |
Medium speed | 0.38770 | 0.05002 | 0.21886 |
Low speed | 1.74973 | 0.08326 | 0.91650 |
Design Speed | MAPE of | MAPE of W | Total |
---|---|---|---|
High speed | 0.04347 | 0.07327 | 0.05837 |
Medium speed | 0.07061 | 0.06144 | 0.06603 |
Low speed | 0.08452 | 0.03362 | 0.05907 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yonekura, K.; Omori, K.; Qi, X.; Suzuki, K. Designing Ship Hull Forms Using Generative Adversarial Networks. AI 2025, 6, 129. https://doi.org/10.3390/ai6060129
Yonekura K, Omori K, Qi X, Suzuki K. Designing Ship Hull Forms Using Generative Adversarial Networks. AI. 2025; 6(6):129. https://doi.org/10.3390/ai6060129
Chicago/Turabian StyleYonekura, Kazuo, Kotaro Omori, Xinran Qi, and Katsuyuki Suzuki. 2025. "Designing Ship Hull Forms Using Generative Adversarial Networks" AI 6, no. 6: 129. https://doi.org/10.3390/ai6060129
APA StyleYonekura, K., Omori, K., Qi, X., & Suzuki, K. (2025). Designing Ship Hull Forms Using Generative Adversarial Networks. AI, 6(6), 129. https://doi.org/10.3390/ai6060129