Winter Bloom Dynamics and Molecular Analysis of Benthic Sediments for the Toxic Dinoflagellate, Dinophysis acuminata, at Torquay Canal, Rehoboth Bay, Delaware, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Dinophysis acuminata Winter 2020 Bloom Analysis at Torquay Canal, Rehoboth Beach, DE
2.2.1. Field Collection
2.2.2. Laboratory Sample Processing
Microscopy
Chlorophyll-a
2.2.3. Transect DNA Processing, Preservation, and Analysis
2.2.4. Dissolved Chemical Nutrient Analysis of Dinophysis acuminata Bloom
2.2.5. Statistical Analysis of Dinophysis acuminata Bloom
2.3. Benthic Marine Sediment Monitoring for Dinophysis acuminata Using Molecular Methods
2.3.1. Field Sample and Data Collection
2.3.2. Dissolved Chemical Nutrient Analysis of Benthic Marine Sediment
2.3.3. Molecular Methods to Determine D. acuminata Presence in Sediment Samples
2.3.4. Statistical Analysis of Benthic Marine Sediment
3. Results
3.1. Dinophysis acuminata Winter 2020 Bloom Analysis
3.2. Benthic Marine Sediment Analysis
4. Discussion
Project Limitations and Future Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedetti, F.; Jalabert, L.; Sourisseau, M.; Becker, B.; Cailliau, C.; Desnos, C.; Elineau, A.; Irisson, J.O.; Lombard, F.; Picheral, M.; et al. The seasonal and interannual fluctuations of plankton abundance and community structure in a North Atlantic Marine Protected Area. Front. Mar. Sci. 2019, 6, 214. [Google Scholar] [CrossRef]
- Kimambo, O.N.; Gumbo, J.R.; Chikoore, H. The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meterological and environmental variations in Tanzania. Heliyon 2019, 5, e01312. [Google Scholar] [CrossRef]
- Barton, A.; Pershing, A.J.; Litchman, E.; Record, N.; Edwards, K.F.; Finkel, Z.; Kiørboe, T.; Ward, B. The biogeography of marine plankton traits. Ecol. Lett. 2013, 16, 522–534. [Google Scholar] [CrossRef]
- Gallegos, C.L.; Bergstrom, P.W. Effects of a Prorocentrum minimum bloom on light availability for and potential impacts on submersed aquatic vegetation in upper Chesapeake Bay. Harmful Algae 2005, 4, 553–574. [Google Scholar] [CrossRef]
- Van Dolah, F.M. Marine algal toxins: Origins, health effects, and their increased occurrence. Environ. Health Perspect. 2000, 108 (Suppl. S1), 133–141. [Google Scholar]
- Deeds, J.R.; Wiles, K.; Heideman, G.B.; White, K.D.; Abraham, A. First US report of shellfish harvesting closures due to confirmed okadaic acid in Texas Gulf coast oysters. Toxicon 2010, 55, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Portela, M.; Reguera, B.; Sibat, M.; Altenburger, A.; Rodriguez, F.; Hess, P. Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry: Effect of Nutritional Status and Prey. Mar. Drugs 2018, 16, 143. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.K.; Duchin, J.S.; Borchert, J.; Quintana, H.F.; Robertson, A. Diarrhetic Shellfish Poisoning, Washington, USA, 2011. Emerg. Infect. Dis. 2013, 19, 1314. [Google Scholar] [CrossRef]
- Yasumoto, T.; Oshima, Y.; Sugawara, W.; Fukuyo, Y.; Oguri, H.; Igarashi, T.; Fujita, N. Identification of Dinophysis fortii as the causative organism of diarrhetic shellfish poisoning. Nippon. Suisan Gakkaishi 1980, 46, 1405–1411. [Google Scholar] [CrossRef]
- Quilliam, M.A.; Mojmir, J.; Lawrence, J.F. 1993. Characterization of the oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry. Anal. Sci. Adv. 1993, 7, e1290070616. [Google Scholar]
- Hossen, V.; Jourdan da Silva, N.; Guillos-Becel, Y.; Marchal, J.; Krys, S. Food poisoning outbreaks linked to mussels contaminated with okadaic acid and dinophystoxin-3 in France, June 2009. Eurosurveill 2011, 16, 20020. [Google Scholar] [CrossRef] [PubMed]
- Reizopoulou, S.; Strogyloudi, E.; Giannakourou, A.; Pagou, K.; Hatzianestis, I.; Pyrgaki, C.; Graneli, E. Okadaic acid accumulation in macrofilter feeders subjected to natural blooms of Dinophysis acuminata. Harm. Algae 2008, 7, 228–234. [Google Scholar] [CrossRef]
- Torgersen, T.; Aasen, J.; Aune, T. Diarrhetic shellfish poisoning by okadaic acid esters from Brown crabs (Cancer pagurus) in Norway. Toxicon 2005, 46, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Reguera, B.; Riobo, P.; Rodriguez, F.; Diaz, P.; Pizarro, G.; Paz, B.; Franco, J.M.; Blanco, J. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish. Mar. Drugs 2014, 12, 394–461. [Google Scholar] [CrossRef]
- Koukaras, K.; Nikolaidis, G. Dinophysis blooms in Greek coastal waters (Thermaikos Gulf, NW Aegean Sea). J. Plankton Res. 2004, 26, 445–457. [Google Scholar] [CrossRef]
- Hattenrath-Lehmann, T.K.; Marcoval, M.A.; Berry, D.L.; Fire, S.; Wang, Z.; Morton, S.L.; Gobler, C.J. The emergence of Dinophysis acuminata blooms and DSP toxins in shellfish in New York waters. Harmful Algae 2013, 26, 33–44. [Google Scholar] [CrossRef]
- Pease, S.K.D.; Brosnahan, M.L.; Sanderson, M.P.; Smith, J.L. Effects of Two Toxin-Producing Harmful Algae, Alexandrium catenella and Dinophysis acuminata (Dinophyceae), on Activity and Mortality of Larval Shellfish. Toxins 2022, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Wolny, J.L.; Egerton, T.A.; Handy, S.M.; Stutts, W.L.; Smith, J.L.; Whereat, E.B.; Bachvaroff, T.R.; Henrichs, D.W.; Campbell, L.; Deeds, J.R. Characterization of Dinophysis spp. (Dinophyceae, Dinophysiales) from the mid-Atlantic region of the United States. J. Phycol. 2020, 56, 404–424. [Google Scholar] [CrossRef] [PubMed]
- Brosnahan, M.L.; Fischer, A.D.; Lopez, C.B.; Moore, S.K.; Anderson, D.M. Cyst-forming dinoflagellates in a warming climate. Harmful Algae 2020, 91, 101728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maso, M.; Garces, E. Harmful microalgae blooms (HAB); problematic and conditions that induce them. Mar. Pollut. Bull. 2006, 53, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Hall, N.S.; Peierls, B.L.; Rossignol, K.L. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries Coasts 2014, 37, 243–258. [Google Scholar] [CrossRef]
- Whyte, C.; Swan, S.; Davidson, K. Changing wind patterns linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae 2014, 39, 365–373. [Google Scholar] [CrossRef]
- Hauser, C.A.; Bason, C.W. The Economic Value of the Delaware Inland Bays. 2020. Available online: https://repository.library.noaa.gov/view/noaa/49610 (accessed on 1 July 2025).
- Google Maps. Available online: https://www.google.com/maps/place/Rehoboth+Bay/@38.6977622,-75.1589203,16451m/data=!3m1!1e3!4m6!3m5!1s0x89b8c9ab8af7f297:0x5c95655281eae219!8m2!3d38.6609901!4d-75.0961549!16zL20vMGJsN3N2?entry=ttu&g_ep=EgoyMDI1MDcxNi4wIKXMDSoASAFQAw%3D%3D (accessed on 27 April 2025).
- Welschmeyer, N.A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985–1992. [Google Scholar] [CrossRef]
- Coyne, K.J.; Hutchins, D.A.; Hare, C.E.; Cary, S.C. Assessing temporal and spatial variability in Pfiesteria piscicida distributions using molecular probing techniques. Aquat. Microb. Ecol. 2001, 24, 275–285. [Google Scholar] [CrossRef]
- Dempster, E.L.; Pryor, K.V.; Francis, D.; Young, J.E.; Rogers, H.J. Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 1999, 27, 66–68. [Google Scholar] [CrossRef]
- Coyne, K.J.; Handy, S.M.; Demir, E.; Whereat, E.B.; Hutchins, D.A.; Portune, K.J.; Doblin, M.A.; Cary, S.C. Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using exogenous DNA reference standard. Limnol. Oceanogr. 2005, 3, 381–391. [Google Scholar] [CrossRef]
- Galluzzi, L.; Bertozzini, E.; Penna, A.; Perini, F.; Pigalarga, A.; Graneli, E.; Magnani, M. Detection and quantification of Prymnesium parvum (Haptophyceae) by real-time PCR. Lett. Appl. Microbiol. 2008, 46, 261–266. [Google Scholar] [CrossRef]
- Rosales, D.; Ellett, A.; Jacobs, J.; Ozbay, G.; Parveen, S.; Pitula, J. Investigating the Relationship between Nitrate, Total Dissolved Nitrogen, and Phosphate with Abundance of Pathogenic Vibrios and Harmful Algal Blooms in Rehoboth Bay, Delaware. Appl. Environ. Microbiol. 2022, 88, e00356-22. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.S.; Notz, W.I.; Flinger, M.A. The Basic Practice of Statistics, 6th ed.; W. H. Freeman and Company: New York, NY, USA, 2013; Chapter 4. [Google Scholar]
- Persson, A.; Smith, B.C. Preservation of Dinoflagellate Cysts in Different Oxygen Regimes: Differences in Cyst Survival between Oxic and Anoxic Natural Environments. Phycology 2022, 2, 384–418. [Google Scholar] [CrossRef]
- Piehler, M.; Dubbs, L. Taking a Sediment Core. University of North Carolina Coastal Studies Institute, 15 August 2015. Available online: www.youtube.com/watch?v=0DixyJZCvVQ (accessed on 1 January 2020).
- Portune, K.J.; Coyne, K.J.; Hutchins, D.A.; Handy, S.M.; Cary, C.S. Quantitative real-time PCR for detecting germination of Heterosigma akashiwo and Chattonella subsalsa cysts from Delaware’s Inland Bays, USA. Aquat. Microb. Ecol. 2009, 55, 229–239. [Google Scholar] [CrossRef]
- Hart, M.C.; Green, D.H.; Bresnan, E.; Bolch, C.J. Large subunit ribosomal RNA gene variation and sequence heterogeneity of Dinophysis (Dinophyceae) species from Scottish coastal waters. Harmful Algae 2007, 6, 271–287. [Google Scholar] [CrossRef]
- Scholin, C.A.; Herzog, M.; Sogin, M.; Anderson, D.M. Identification of group-specific and train-specific genetic-markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 1994, 30, 999–1011. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Estimated Nitrate Concentrations in Groundwater Used for Drinking. 2016. Available online: https://www.epa.gov/nutrient-policy-data/estimated-nitrate-concentrations-groundwater-used-drinking (accessed on 1 December 2020).
- United States Environmental Protection Agency. Ground Water and Drinking Water. 14 February 2020. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 6 December 2020).
- Ozbay, G. Delaware Inland Bays Eastern Oyster (Crassostrea virginica) Quality for Consumption and Application of Non-Thermal, High Hydrostatic Pressure (HHP) to Extend Oyster Shelf Life. Master’s Thesis, Delaware State University, Human Ecology, Dover, DE, USA, 2016; 173p. [Google Scholar]
- Bravo, I.; Fraga, S.; Figueroa, R.I.; Pazos, Y.; Massanet, A.; Ramilo, I. Bloom dynamics and life cycle strategies of two toxic dinoflagellates in a coasting upwelling system (NW Iberian Penninsula). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 222–234. [Google Scholar] [CrossRef]
- Kremp, A.; Heiskanen, A.S. Sexuality and cyst formation of the spring bloom dinoflagellate Scrippsiella hangoei in the coastal northern Baltic Sea. Mar. Biol. 1999, 134, 771–777. [Google Scholar] [CrossRef]
- Warns, A.; Hense, I.; Kremp, A. Modelling the life cycle of dinoflagellates; a case study with Biecheleria baltica. J. Plankton Res. 2012, 35, 379–392. [Google Scholar] [CrossRef]
- Hattenrath-Lehmann, T.K.; Smith, J.L.; Wallace, R.B.; Merlo, L.; Koch, F.; Mittelsdorf, H.; Goleski, J.A.; Anderson, D.M.; Gobler, C.J. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellates, Alexandrium fundyense. Limnol. Oceanogr. 2015, 60, 198–214. [Google Scholar] [CrossRef] [PubMed]
- Hattenrath-Lehmann, T.K.; Marcoval, M.A.; Mittlesdorf, H.; Goleski, J.A.; Wang, Z.; Haynes, B. Nitrogenous Nutrients Promote the growth and toxicity of Dinophysis acuminata during estuarine bloom events. PLoS ONE 2015, 10, e0124148. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Smith, J.; Kulis, D.; Anderson, D. Role of dissolved nitrate and orthophosphate in isolates of Mesodinium rubrum and toxin-producing Dinophysis acuminata. Aquat. Microb. Ecol. 2015, 75, 169–185. [Google Scholar] [CrossRef]
- Setälä, O.; Autio, R.; Kuosa, H.; Rintala, J.; Ylöstalo, P. Survival and photosynthetic activity of different Dinophysis acuminata populations in the northern Baltic Sea. Harmful Algae 2005, 4, 337–350. [Google Scholar] [CrossRef]
- Tong, M.; Zhou, Q.; David, K.M.; Jiang, T.; Qi, Y.; Donald, A.M. Culture techniques and growth characteristics of Dinophysis acuminata and its prey. Chin. J. Oceanol. Limnol. 2010, 28, 1230–1239. [Google Scholar] [CrossRef]
- Bravo, I.; Figueroa, R.I. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2014, 2, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kang, Y.G.; Kim, H.S.; Yih, W.; Coats, D.W.; Park, M.G. Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat. Microb. Ecol. 2008, 51, 301–310. [Google Scholar] [CrossRef]
- Riisgaard, K.; Hansen, P.J. Role of food uptake for photosynthesis, growth and survival of the mixotrophic dinoflagellate Dinophysis acuminata. Mar. Ecol. Prog. Ser. 2009, 381, 51–62. [Google Scholar] [CrossRef]
- Berland, B.R.; Maestrini, S.Y.; Grzebyk, D. Observation on possible life cycle stages of the dinoflagellates Dinophysis cf. acuminata, Dinophysis acuta and Dinophysis pavillardi. Aquat. Microb. Ecol. 1995, 9, 183–189. [Google Scholar] [CrossRef]
- Escalera, L.; Reguera, B. Planozygote Division and Other Observations on the Sexual Cycle of Several Species of Dinophysis (Dinophyceae, Dinophysiales). J. Phycol. 2008, 44, 1425–1436. [Google Scholar] [CrossRef]
- Collins, R.A.; Wangensteen, O.S.; O’Gorman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of environmental DNA in marine systems. Commun. Biol. 2018, 1, 185. [Google Scholar] [CrossRef]
- Coyne, K.J.; Hare, C.E.; Popels, L.C.; Hutchins, D.A.; Cary, S.C. Distributions of Pfisteria piscida cyst populations in sediments of the Delaware Inland Bays. Harmful Algae 2006, 5, 363–373. [Google Scholar] [CrossRef]
- Keafer, B.A.; Buesseler, K.O.; Anderson, D.M. Burial of living dinoflagellate cysts in estuarine and nearshore sediments. Mar. Micropaleontol. 1992, 20, 147–161. [Google Scholar] [CrossRef]
- McQuoid, M.R.; Godhe, A.; Nordberg, K. Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. Eur. J. Phycol. 2002, 37, 191–201. [Google Scholar] [CrossRef]
- Rozan, T.F.; Taillefert, M.; Trouwborst, R.E.; Glazer, B.T.; Ma, S.; Herszage, J.; Valdes, L.M.; Price, K.S.; Luther, G.W. Iron–sulfur–phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr. 2002, 47, 1346–1354. [Google Scholar] [CrossRef]
- Taillefert, M.; Rozan, T.F.; Glazer, B.T.; Herszage, J.; Trouwborst, R.E.; Luther, G.W. Seasonal variations of soluble organicFe(III) in sediment porewaters as revealed by voltammetric microelectrodes. In Analyses of Trace Elemental Biogeochemistry; Taillefert, M., Rozan, T.F., Eds.; American Chemical Society: Washington, DC, USA, 2002; pp. 247–264. [Google Scholar]
- Coyne, K.J.; Cary, S.C. Molecular approaches to the investigation of viable dinoflagellate cysts in natural sediments from estuarine environments. Eukaryot. Microbiol. 2005, 52, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Jephson, T.; Carlsson, P. Species and stratification dependent diel vertical migration behaviour of three dinoflagellate species in a laboratory study. J. Plankton Res. 2009, 31, 1353–1362. [Google Scholar] [CrossRef]
- Lassus, P.; Proniewski, F.; Pigeon, C.; Veret, L.; Le Dean, L.; Bardouil, M.; Truquet, P. The diurnal vertical migrations of Dinophysis acuminata in an outdoor tank at Antifer (Normandy, France). Aquat. Living Resour. 1990, 3, 143–145. [Google Scholar] [CrossRef]
Site Name | Description | Coordinates |
---|---|---|
TQB | Transect starting point | 38.699079, −75.112431 |
TQBay | Transect ending point | 38.690418, −75.104775 |
Torquay Canal (TQ) | Dead-end residential canal | TQ8: 38.692135, −75.105985 TQ9: 38.694625, −75.106608 TQ10: 38.697852, −75.109639 TQ11: 38.700784, −75.111952 TQ12: 38.699462, −75.112918 |
Camp Arrowhead (CA) | Pilot artificial oyster reef | A: 38.656779, −75.130685 B: 38.656037, −75.130158 C: 38.655379, −75.129155 |
James Farm (JF) | Ecological preserve | A: 38.574917, −75.079540 B: 38.575082, −75.079304 C: 38.575078, −75.079439 |
Pearson Correlation | Water Temp (°C) | Chl-a (µg L−1) | Conductivity (mS/cm) | DO (mg L−1) | NOx (mg N L−1) | OP (mg P L−1) | pH |
---|---|---|---|---|---|---|---|
Coefficient (r) | −0.156 | 0.055 | −0.258 | −0.087 | −0.098 | 0.0567 | −0.404 |
N | 109 | 35 | 35 | 37 | 37 | 37 | 37 |
T statistic | 1.635 | 0.318 | 1.580 | 0.518 | 0.598 | 0.334 | 2.611 |
DF | 107 | 33 | 35 | 35 | 35 | 35 | 35 |
p-value | 0.105 | 0.753 | 0.123 | 0.608 | 0.566 | 0.738 | 0.0132 |
Pearson Correlation | Date | Water Temp (°C) | Chl-a (µg L−1) | Conductivity (mS/cm) | DO (mg L−1) | NOx (mg N L−1) | OP (mg P L−1) | pH |
---|---|---|---|---|---|---|---|---|
Coefficient (r) | −0.253 | −0.152 | −0.698 | −0.087 | −0.264 | 0.047 | −0.058 | −0.3869 |
N | 13 | 13 | 12 | 13 | 13 | 12 | 12 | 13 |
T statistic | 0.868 | 0.510 | 0.221 | 0.290 | 0.909 | 0.150 | 0.182 | 1.391 |
DF | 11 | 11 | 10 | 11 | 11 | 10 | 10 | 11 |
p value | 0.404 | 0.620 | 0.829 | 0.777 | 0.383 | 0.884 | 0.859 | 0.192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, A.K.; Attarwala, T.; Ozbay, G. Winter Bloom Dynamics and Molecular Analysis of Benthic Sediments for the Toxic Dinoflagellate, Dinophysis acuminata, at Torquay Canal, Rehoboth Bay, Delaware, USA. Oceans 2025, 6, 66. https://doi.org/10.3390/oceans6040066
Pappas AK, Attarwala T, Ozbay G. Winter Bloom Dynamics and Molecular Analysis of Benthic Sediments for the Toxic Dinoflagellate, Dinophysis acuminata, at Torquay Canal, Rehoboth Bay, Delaware, USA. Oceans. 2025; 6(4):66. https://doi.org/10.3390/oceans6040066
Chicago/Turabian StylePappas, Amanda Kathryn, Tahera Attarwala, and Gulnihal Ozbay. 2025. "Winter Bloom Dynamics and Molecular Analysis of Benthic Sediments for the Toxic Dinoflagellate, Dinophysis acuminata, at Torquay Canal, Rehoboth Bay, Delaware, USA" Oceans 6, no. 4: 66. https://doi.org/10.3390/oceans6040066
APA StylePappas, A. K., Attarwala, T., & Ozbay, G. (2025). Winter Bloom Dynamics and Molecular Analysis of Benthic Sediments for the Toxic Dinoflagellate, Dinophysis acuminata, at Torquay Canal, Rehoboth Bay, Delaware, USA. Oceans, 6(4), 66. https://doi.org/10.3390/oceans6040066