A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea
Abstract
:1. Introduction
2. Macroalgae Fit for Human Consumption
2.1. Global Production
2.2. Important Taxa
3. Macroalgae Fit for Human Consumption in Europe
3.1. Production
3.2. Important Taxa and Consumption
3.3. The Development of Cultivation
4. Macroalgae Fit for Human Consumption in the Mediterranean Region
4.1. Production
4.2. Important Taxa and Their Commercial Potential
4.3. Feasibility of Cultivation
4.4. The Limitations and Possibilities of Production
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guiry, M.D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L. Macroalgae. Encyclopedia 2021, 1, 177–188. [Google Scholar] [CrossRef]
- Braud, L.; McDonnell, K.; Murphy, F. Environmental life cycle assessment of algae systems: Critical review of modelling approaches. Renew. Sustain. Energy Rev. 2023, 179, 113218. [Google Scholar] [CrossRef]
- Pereira, L.; Correia, F. Algas Marinhas da Costa Portuguesa—Ecologia, Biodiversidade e Utilizações; Nota de Rodapé Editores: Paris, France, 2015; p. 341. [Google Scholar]
- Pereira, L. Macroalgae: Diversity and Conservation. In Life below Water; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2020; pp. 1–13. [Google Scholar]
- Armeli Minicante, S.; Bongiorni, L.; De Lazzari, A. Bio-based products from Mediterranean seaweeds: Italian opportunities and challenges for a sustainable blue economy. Sustainability 2022, 14, 5634. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022; Available online: https://doi.org/10.4060/cc0461en (accessed on 31 December 2023).
- Smith, A.G.; Tredici, M.R.; Boussiba, S.; Verdelho, V.; Cadoret, J.-P.; Davey, M.P.; Huete-Ortega, M.; Acien, F.G.; Schmid-Staiger, U.; Rodriguez, H.; et al. EABA—Position Paper—What Are Algae? EABA: Florence, Italy, 2021. [Google Scholar] [CrossRef]
- Ullmann, J.; Grimm, D. Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org. Agric. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Pereira, L. Edible Seaweeds of the World; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2016; p. 448. [Google Scholar]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. World cuisine of seaweeds: Science meets gastronomy. Int. J. Gastron. Food Sci. 2018, 14, 55–65. [Google Scholar] [CrossRef]
- Pereira, L. Therapeutic and Nutritional Uses of Algae; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2018; p. 560. [Google Scholar]
- Cotas, J.; Leandro, A.; Pacheco, D.; Gonçalves, A.M.M.; Pereira, L. A comprehensive review of the nutraceutical and therapeutic applications of Red Seaweeds (Rhodophyta). Life 2020, 10, 19. [Google Scholar] [CrossRef]
- Gaspar, R.; Fonseca, R.; Pereira, L. Illustrated Guide to the Macroalgae of Buarcos Bay, Figueira da Foz, Portugal, 1st ed.; MARE UC, DCV; FCT: Coimbra, Portugal, 2020; p. 128. [Google Scholar] [CrossRef]
- Pacheco, D.; García-Poza, S.; Cotas, J.; Gonçalves, A.M.M.; Pereira, L. Fucoidan—A valuable source from the ocean to pharmaceutical. Front. Drug Chem. Clin. Res. 2020, 3, 1–4. [Google Scholar] [CrossRef]
- Francezon, N.; Tremblay, A.; Mouget, J.L.; Pasetto, P.; Beaulieu, L. Algae as a source of natural flavors in innovative foods. J. Agric. Food Chem. 2021, 69, 11753–11772. [Google Scholar] [CrossRef]
- Mandalka, A.; Cavalcanti, M.I.L.G.; Harb, T.B.; Toyota Fujii, M.; Eisner, P.; Schweiggert-Weisz, U.; Chow, F. Nutritional composition of beach-cast marine algae from the Brazilian coast: Added value for algal biomass considered as waste. Foods 2022, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Mac Monagail, M.; Cornish, L.; Morrisson, L.; Araújo, R.; Critchley, A.T. Sustainable harvesting of wild seaweed resources. Eur. J. Phycol. 2017, 52, 371–390. [Google Scholar] [CrossRef]
- Erlandson, J.M.; Graham, M.H.; Bourque, B.J.; Corbett, D.; Estes, J.A.; Steneck, R.S. The kelp highway hypothesis: Marine ecology, the coastal migration theory, and the peopling of the Americas. J. Isl. Coast. Archaeol. 2007, 2, 161–174. [Google Scholar] [CrossRef]
- Cornish, M.L.; Critchley, A.T.; Mouritsen, O.G. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia 2015, 54, 649–666. [Google Scholar] [CrossRef]
- Rogel-Castillo, C.; Latorre-Castañeda, M.; Muñoz-Muñoz, C.; Agurto-Muñoz, C. Seaweeds in Food: Current Trends. Plants 2023, 12, 2287. [Google Scholar] [CrossRef]
- O’Connor, K. Seaweed: A Global History; Reaktion Books Ltd.: London, UK, 2017; p. 176. [Google Scholar]
- Nisizawa, K.; Noda, H.; Kikuchi, R.; Watanabe, T. The main seaweed foods in Japan. Hydrobiologia 1987, 151, 5–29. [Google Scholar] [CrossRef]
- Indergaard, M.; Minsaas, J. Animal and Human Nutrition. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; John Wiley & Sons: Chichester, UK, 1991; p. 432. [Google Scholar]
- Pereira, L.; Bahcevandziev, K.; Joshi, N.H. Seaweeds as Plant Fertilizer, Agricultural Biostimulants and Animal Fodder; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2019; p. 232. [Google Scholar]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Ferdouse, F.; Holdt, S.L.; Smith, R.; Murúa, P.; Yang, Z. The global status of seaweed production, trade and utilization. In Globefish Research Programme; FAO: Rome, Italy, 2018; p. 120. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/163078059/FAO_report_Global_seaweed_2018.pdf (accessed on 15 December 2023).
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Bjerregaard, R.; Valderrama, D.; Radulovich, R.; Diana, J.; Capron, M.; Mckinnie, C.A.; Forster, J. Seaweed Aquaculture for Food Security, Income Generation and Environmental Health in Tropical Developing Countries; The World Bank No. 107147; World Bank: Washington, DC, USA, 2016; p. 16. [Google Scholar]
- Vincent, A.; Stanley, A.; Ring, J. Seaweed for Europe—Hidden Champion of the Ocean, Seaweed for Europe; SUN Institute: London, UK, 2021; p. 60. Available online: https://www.seaweedeurope.com/wp-content/uploads/2020/10/Seaweed_for_Europe-Hidden_Champion_of_the_ocean-Report.pdf (accessed on 10 June 2024).
- Maar, M.; Holbach, A.; Boderskov, T.; Thomsen, M.; Buck, B.H.; Kotta, J.; Bruhn, A. Multi-use of offshore wind farms with low-trophic aquaculture can help achieve global sustainability goals. Commun. Earth Environ. 2023, 4, 447. [Google Scholar] [CrossRef]
- Estridge, P.; Smallman, D. Co-Locating Seaweed Farming alongside Offshore Wind. Available online: https://www.seaweedgeneration.com/education/colocating-seaweed-farm-with-offshore-wind.html (accessed on 28 March 2024).
- Radulovich, R.; Neori, A.; Valderrama, D.; Reddy, C.R.K.; Cronin, H.; Forster, J. Farming of seaweeds. In Seaweed Sustainability: Food and Non-Food Applications; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 27–59. [Google Scholar] [CrossRef]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multitrophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. Available online: https://www.frontiersin.org/articles/10.3389/fmars.2018.00165/full (accessed on 10 June 2024). [CrossRef]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Nederlof, M.A.J.; Verdegem, M.C.J.; Smaal, A.C.; Jansen, H.M. Nutrient retention efficiencies in integrated multi-trophic aquaculture. Rev Aquac. 2022, 14, 1194–1212. [Google Scholar] [CrossRef]
- Nature Conservancy. Available online: https://www.nature.org/en-us/what-we-do/our-insights/perspectives/restorative-aquaculture-for-nature-and-communities/ (accessed on 15 December 2023).
- Urban Ocean Lab. Available online: https://urbanoceanlab.org/factsheet/regenerative-ocean-farming (accessed on 15 December 2023).
- Visch, W.; Nylund, G.M.; Pavia, H. Growth and biofouling in kelp aquaculture (Saccharina latissima): The effect of location and wave exposure. J. Appl. Phycol. 2020, 32, 3199–3209. [Google Scholar] [CrossRef]
- Kaur, M.; Saini, K.C.; Ojah, H. Abiotic stress in algae: Response, signaling and transgenic approaches. J. Appl. Phycol. 2022, 34, 1843–1869. [Google Scholar] [CrossRef]
- Kumar, Y.N.; Poong, S.W.; Gachon, C.; Brodie, J.; Sade, A.; Lim, P.E. Impact of elevated temperature on the physiological and biochemical responses of Kappaphycus alvarezii (Rhodophyta). PLoS ONE 2020, 15, e0239097. [Google Scholar] [CrossRef]
- Chalanika De Silva, H.C.; Asaeda, T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interact. 2017, 12, 228–236. [Google Scholar] [CrossRef]
- Khan, N.; Sudhakar, K.; Mamat, R. Macroalgae farming for sustainable future: Navigating opportunities and driving innovation. Heliyon 2024, 10, e28208. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bogaert, K.; Engelen, A.H.; Leliaert, F.; Roleda, M.Y.; De Clerck, O. Seaweed reproductive biology: Environmental and genetic controls. Bot. Mar. 2017, 60, 89–108. [Google Scholar] [CrossRef]
- Aquarone, M.C.; Adams, S. Mifsud, IV-7 Mediterranean Sea: LME 26. In The UNEP Large Marine Ecosystem Report: A Perspective on Changing Conditions in LMEs of the World’s Regional Seas; Sherman, K., Hempel, G., Eds.; UNEP Regional Seas, Report and Studies No. 182; UN Environment Programme; FAO: Rome, Italy, 2008; pp. 189–200. Available online: https://iwlearn.net/resolveuid/4c0aa720-0124-40a3-8689-71757e53e980 (accessed on 10 June 2024).
- Figueroa, F.L.; Flores-Moya, A.; Vergara, J.J.; Korbee, N.; Hernández, I. Autochthonous seaweeds. In The Mediterranean Sea; Goffredo, S., Dubinsky, Z., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 123–135. ISBN 978-94-007-6703-4. [Google Scholar]
- UNEP/MAP; Plan Bleu. SOED State of the Environment and Development in the Mediterranean; UNEP: Nairobi, Kenya; Plan Bleu Regional Activity Centre: Marseille, France, 2020; p. 342. Available online: https://planbleu.org/wp-content/uploads/2020/11/SoED-Full-Report.pdf (accessed on 10 June 2024).
- UNEP. Seaweed Farming: Assessment on the Potential of Sustainable Upscaling for Climate, Communities and the Planet; UNEP: Nairobi, Kenya, 2023; p. 77. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/42642/seaweed_farming_climate.pdf?sequence=3&isAllowed=y (accessed on 10 June 2024).
- Ross, F.W.R.; Boyd, P.W.; Filbee-Dexter, K.; Watanabe, K.; Ortega, A.; Krause-Jensen, D.; Lovelock, C.; Sondak, C.F.A.; Bach, L.T.; Duarte, C.M.; et al. Potential role of seaweeds in climate change mitigation. Sci. Total Environ. 2023, 885, 163699. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020; Available online: https://doi.org/10.4060/ca9229en (accessed on 31 December 2023).
- FAO. Global Seaweeds and Microalgae Production, 1950–2019; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb4579en/cb4579en.pdf (accessed on 31 December 2023).
- Camia, A.; Robert, N.; Jonsson, R.; Pilli, R.; García-Condado, S.; López-Lozano, R.; van der Velde, M.; Ronzon, T.; Gurría, P.; M’Barek, R.; et al. Biomass production, supply, uses and flows in the European Union. In First Results from an Integrated Assessment, EUR 28993 EN; Publications Office of the European Union: Luxembourg, 2018; p. 124. [Google Scholar] [CrossRef]
- Barbier, M.; Charrier, B.; Araujo, R.; Holdt, S.; Jacquemin, B.; Rebours, C. PEGASUS—PHYCOMORPH European Guidelines for a Sustainable Aquaculture of Seaweeds; Barbier, M., Charrier, B., Eds.; COST Action FA1406; Station Biologique de Roscoff, CNRS-Sorbonne Université: Roscoff, France, 2019; p. 194. [Google Scholar] [CrossRef]
- Campbell, I.; Macleod, A.; Sahlmann, C.; Neves, L.; Funderud, J.; Øverland, M.; Hughes, A.D.; Stanley, M. The environmental risks associated with the development of seaweed farming in Europe—Prioritizing key knowledge gaps. Front. Mar. Sci. 2019, 6, 107. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Kuech, A.; Breuer, M.; Popescu, I. Research for PECH Committee—The Future of the EU Algae Sector; Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2023; p. 47. [Google Scholar]
- Mancini, R. The Blue Economy in the Mediterranean Region and Opportunities for the Algae Industry; Istituto Affari Internazionali (IAI): Rome, Italy, 2022; p. 22. Available online: https://www.iai.it/sites/default/files/iaip2222.pdf (accessed on 10 June 2024).
- Hatch Innovation Services. Seaweed Insights. Available online: https://seaweedinsights.com/hatch-farm-insights// (accessed on 15 April 2024).
- Phyconomy Seaweed State of the Industry. 2023. Available online: https://phyconomy.net/articles/2022-seaweed-review/ (accessed on 25 January 2024).
- OEC. The Observatory of Economic Complexity. 2024. Available online: https://oec.world/en/profile/hs/seaweeds-and-other-algae-fit-for-human-consumption-fresh-chilled-frozen-or-dried-whether-or-not-ground (accessed on 15 January 2024).
- IMARC. Seaweed Market Report by Environment (Aquaculture, Wild Harvest), Product (Red, Brown, Green), Application (Processed Foods, Direct Human Consumption, Hydrocolloids, Fertilizers, Animal Feed Additives, and Others), and Region 2024–2032. 2023. Available online: https://www.imarcgroup.com/seaweed-market (accessed on 31 December 2023).
- Grand View Research. Commercial Seaweed Market Size, Share & Trends Analysis Report by Product (Brown, Red, Green), by Application (Human Consumption, Animal Feed, Agriculture), by Form (Leaf, Powdered, Flakes), by Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/commercial-seaweed-market (accessed on 31 December 2023).
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Sahin, S.; Lacomba, R.; Barba, F.J. Proximate Composition and Nutritional Value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcate. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [PubMed]
- WORMS. Available online: https://www.marinespecies.org (accessed on 31 December 2023).
- EASIN. Available online: https://easin.jrc.ec.europa.eu/spexplorer/search/searchpaged (accessed on 31 December 2023).
- FAO. Cultivation of Temperate Seaweeds in the Asia Pacific Region. 2023. Available online: https://www.fao.org/3/ab728e/AB728E02.htm (accessed on 31 December 2023).
- Guiry, M.D.; Guiry, G.M. AlgaeBase; World-Wide Electronic Publication: Galway, Ireland, 2024; Available online: https://www.algaebase.org (accessed on 16 April 2024).
- FAO. Cultured Aquatic Species Information Programme. 2023. Available online: https://www.fao.org/fishery/en/culturedspecies/undaria_pinnatifida/en (accessed on 31 December 2023).
- Epstein, G.; Smale, D.A. Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecol Evolut. 2017, 7, 8624–8642. [Google Scholar] [CrossRef] [PubMed]
- FAO. Cultured Aquatic Species Fact Sheets Porphyra. 2023. Available online: https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/en/en_nori.htm (accessed on 31 December 2023).
- Costello, M.J.; Bouchet, P.; Emblow, C.S.; Legakis, A. European marine biodiversity inventory and taxonomic resources: State of the art and gaps in knowledge. Mar. Ecol. Prog. Ser. 2006, 316, 257–268. [Google Scholar] [CrossRef]
- Mac Monagail, M.; Morrison, L. The seaweed resources of Ireland: A twenty-first century perspective. J. Appl. Phycol. 2020, 32, 1287–1300. [Google Scholar] [CrossRef]
- Limiñana, V.A.; Benoist, T.; Anton Sempere, S.; Maestre Pérez, S.E.; Prats Moya, M.S. Chemical composition of sustainable Mediterranean macroalgae obtained from land-based and sea-based aquaculture systems. Food Biosci. 2023, 54, 102902. [Google Scholar] [CrossRef]
- Vazquez Calderon, F.; Sanchez Lopez, J. An overview of the algae industry in Europe. In Producers, Production Systems, Species, Biomass Uses, Other Steps in the Value Chain and Socio-Economic Data; Guillen, J., Avraamides, M., Eds.; JRC130107; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Bronswijk, L.; Vlottes, M.; Draisma, M.; Brouwers, E.; van Baelen, F.D. Study on Existing Market for Algal Food Applications Part A: Seaweed; North Sea Farm Foundation: The Hague, Amsterdam, 2019; p. 40. Available online: https://www.northseafarmers.org/projects/D4.1.1A_Study-on-the-existing-market-for-seaweed-food-applications.pdf (accessed on 10 June 2024).
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Afonso, N.C.; Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Brown macroalgae as valuable food ingredients. Antioxidants 2019, 8, 365. [Google Scholar] [CrossRef]
- NAFF. New Algae for Food Forum Novel Food Priorities. Available online: https://naff.eaba-association.org/priorities (accessed on 21 May 2024).
- CEVA (Centre d’Étude et de Valorisation des Algues). Seaweed Standards for Food and Cosmetics. 2016. Available online: https://media-01.imu.nl/storage/seagriculture.eu/2116/wp/2016/10/2.3-Maud-Benoit-Seaweed-standards-for-food-and-cosmetics.pdf (accessed on 26 January 2024).
- Zhang, L.; Liao, W.; Huang, Y.; Wen, Y.; Chu, Y.; Zhao, C. Global seaweed farming and processing in the past 20 years. Food Prod. Process. Nutr. 2022, 4, 23. [Google Scholar] [CrossRef]
- Banach, J.L.; Koch, S.J.I.; Hoffmans, Y.; van den Burg, S.W.K. Seaweed Value Chain Stakeholder Perspectives for Food and Environmental Safety Hazards. Foods 2022, 11, 1514. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Afflerbach, J.; Frazier, M.; Halpern, B. Blue Growth Potential to Mitigate Climate Change through Seaweed Offsetting. Curr. Biol. 2019, 29, 3087–3093. [Google Scholar] [CrossRef] [PubMed]
- Theuerkauf, S.J.; Morris, J.A., Jr.; Waters, T.J.; Wickliffe, L.C.; Alleway, H.K.; Jones, R.C. A global spatial analysis reveals where marine aquaculture can benefit nature and people. PLoS ONE 2019, 14, e0222282. [Google Scholar] [CrossRef] [PubMed]
- FishStatJ. Software for Fishery and Aquaculture Statistical Time Series. Available online: https://www.fao.org/fishery/en/statistics/software/fishstatj (accessed on 15 April 2024).
- Phyconomy Database. Available online: https://airtable.com/appikoaOp2g37vuOF/shrGYaj6CikiaXEhH/tblZFNBiWgVocM5BA/viwAtxUXazNenKTnu (accessed on 25 January 2024).
- European Atlas of the Seas. 2024. Available online: https://ec.europa.eu/maritimeaffairs/atlas/maritime_atlas/#lang=EN;p=w;bkgd=1;theme=321:0.87,638:0.89,242:0.85,717:0.91;c=887823.2177163037,3865863.670161061;z=6 (accessed on 15 January 2024).
- Petrocelli, A.; Cecere, E. A 20-year update on the state of seaweed resources in Italy. Bot. Mar. 2019, 62, 249–264. [Google Scholar] [CrossRef]
- Trikka, F.; Israel, P.; Koukaras, K.; Argiriou, A. Biochemical characterization of eight Greek algae as candidate species for local seaweed cultivation. Bot. Mar. 2021, 64, 313–326. [Google Scholar] [CrossRef]
- Friedlander, M. Israeli R&D activities in seaweed cultivation. Isr. J. Plant Sci. 2008, 56, 15–28. [Google Scholar] [CrossRef]
- Neori, A.; Shpigel, M.; Guttman, L.; Israel, A. Development of polyculture and Integrated Multi-Trophic Aquaculture (IMTA) in Israel: A review. IJA 2017, 68, 20874. [Google Scholar] [CrossRef]
- Israel, A.; Golberg, A.; Neori, A. The seaweed resources of Israel in the Eastern Mediterranean Sea. Bot. Mar. 2019, 63, 85–95. [Google Scholar] [CrossRef]
- Rashad, S.; El-Chaghaby, G.A. Marine Algae in Egypt: Distribution, phytochemical composition and biological uses as bioactive resources (a review). Egypt. J. Aquat. Biol. Fish. 2020, 24, 147–160. Available online: https://ejabf.journals.ekb.eg/article_103630_cfe4e893d2d60bb6b4117f9ddc496875.pdf (accessed on 10 June 2024). [CrossRef]
- Ktari, L.; Chebil Ajjabi, L.; De Clerck, O.; Gómez Pinchetti, J.L.; Rebours, C. Seaweeds as a promising resource for blue economy development in Tunisia: Current state, opportunities, and challenges. J. Appl. Phycol. 2021, 34, 489–505. [Google Scholar] [CrossRef]
- Palmieri, N.; Forleo, M.B. The potential of edible seaweed within the western diet. A segmentation of Italian consumers. Int. J. Gastron. Food Sci. 2020, 20, 100202. [Google Scholar] [CrossRef]
- Pereira, L. Seaweed Flora of the European North Atlantic and Mediterranean. In Springer Handbook of Marine Biotechnology; Springer Handbooks; Kim, S.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 65–178. [Google Scholar] [CrossRef]
- Otero, M.M.; Cebrian, E.; Francour, P.; Galil, B.; Savini, D. Monitoring Marine Invasive Species in Mediterranean Marine Protected Areas (MPAs): A Strategy and Practical Guide for Managers; IUCN: Malaga, Spain, 2013; p. 136. [Google Scholar]
- Floc’h, J.Y.; Pajot, R.; Wallentinus, I. The Japanese brown alga Undaria pinnatifida on the coast of France and its possible establishment in European waters. ICES J. Mar. Sci. 1991, 47, 379–390. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; The Invasive Species Specialist Group (ISSG): Auckland, New Zealand; A Specialist Group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN): Auckland, New Zealand; IUCN: Auckland, New Zealand, 2000; p. 12. [Google Scholar]
- Katsanevakis, S.; Wallentinus, I.; Zenetos, A.; Leppäkoski, E.; Çinar, M.E.; Oztürk, B.; Grabowski, M.; Golani, D.; Cardoso, A.C. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 2014, 9, 391–423. [Google Scholar] [CrossRef]
- Tsirintanis, K.; Azzurro, E.; Crocetta, F.; Dimiza, M.; Froglia, C.; Gerovasileiou, V.; Langeneck, J.; Mancinelli, G.; Rosso, A.; Stern, N.; et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquat. Invasions 2022, 17, 308–352. [Google Scholar] [CrossRef]
- Streftaris, N.; Zenetos, A. Alien Marine Species in the Mediterranean—The 100 ‘WorstInvasives’ and their Impact. Mediterr. Mar. Sci. 2006, 7, 87–118. [Google Scholar] [CrossRef]
- Cormaci, M.; Furnari, G.; Catra, M.; Alongi, G.; Giaccone, G. Flora marina bentonica del Mediterraneo: Phaeophyceae. Boll. Dell’Accad. Gioenia Sci. Nat. Catania 2012, 45, 1–508. Available online: https://www.gioenia.unict.it/bollettino/bollettino2012-n375/full_papers/Erratum.pdf (accessed on 31 December 2023).
- Ministry of Agriculture and Forestry New Zeland. Review of the Undaria Commercial Harvest Policy. 2009. Available online: https://www.mpi.govt.nz/dmsdocument/19880-Commercial-harvest-of-Undaria-discussion (accessed on 15 January 2024).
- Pereira, A.G.; Fraga-Corral, M.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar. Drugs 2021, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- NIMPIS. National Introduced Marine Pest Information System. Available online: https://nimpis.marinepests.gov.au/species/species/53 (accessed on 15 January 2024).
- Pereira, L.; Silva, P. A concise review of the red macroalgae Chondracanthus teedei (Mertens ex Roth) Kützing and Chondracanthus teedei var. lusitanicus (J.E. De Mesquita Rodrigues) Bárbara Cremades. J. Appl. Phycol. 2021, 33, 111–131. [Google Scholar] [CrossRef]
- Bermejo, R.; Cara, C.L.; Macías, M.; Sánchez-García, J.; Hernández, I. Growth rates of Gracilariopsis longissima, Gracilaria bursapastoris and Chondracanthus teedei (Rhodophyta) cultured in ropes: Implication for N biomitigation in Cadiz Bay (Southern Spain). J. Appl. Phycol. 2020, 32, 879–1891. [Google Scholar] [CrossRef]
- Silva, P.; Pereira, L. Concise review of Osmundea pinnatifida (Hudson) Stackhouse. J. Appl. Phycol. 2020, 32, 2761–2771. [Google Scholar] [CrossRef]
- Biancacci, C.; Abell, R.; McDougall, G.J. Annual compositional variation in wild Osmundea pinnatifida (Hudson) Stackhouse from the west coast of Scotland. J. Appl. Phycol. 2022, 34, 1661–1675. [Google Scholar] [CrossRef]
- Royer, C. Advancing Development of Porphyra umbilicalis as a Red Algal Model System and Aquaculture Crop. Master’s Thesis, University of Maine, Orono, ME, USA, 2017; p. 2683. Available online: http://digitalcommons.library.umaine.edu/etd/2683 (accessed on 10 June 2024).
- Fleurence, J.; Levine, I. Seaweed in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2016; p. 458. [Google Scholar] [CrossRef]
- Netalgae EU. Seaweed Industry in Europe. Available online: https://www.seaweed.ie/irish_seaweed_contacts/doc/Filieres_12p_UK.pdf (accessed on 16 April 2024).
- Un Mondo Ecosostenibile. Available online: https://antropocene.it/en (accessed on 15 April 2024).
- Chemodanov, A.; Robin, A.; Jinjikhashvily, G.; Yitzhak, D.; Liberzon, A.; Israel, A.; Golberg, A. Feasibility study of Ulva sp. (Chlorophyta) intensive cultivation in a coastal area of the Eastern Mediterranean Sea. Biofuels Bioprod. Biorefining 2019, 13, 864–877. [Google Scholar] [CrossRef]
- Wichard, T.; Charrier, B.; Mineur, F.; Bothwell, J.H.; Clerck, O.D.; Coates, J.C. The green seaweed Ulva: A model system to study morphogenesis. Front. Plant Sci. 2015, 6, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; McHale, M.; Sulpice, R. Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture. Biology 2022, 11, 1593. [Google Scholar] [CrossRef] [PubMed]
- Franzen, D.; Nathaniel, H.; Lingegård, S.; Gröndahl, F. Macroalgae Production Manual Production, Challenges & Pathways; KTH Royal Institute of Technology: Stockholm, Sweden, 2022; p. 23. [Google Scholar]
- Dominguez, H.; Loret, E.P. Ulva lactuca, a Source of Troubles and Potential Riches. Mar Drugs. 2019, 17, 357. [Google Scholar] [CrossRef]
- Araujo, R.; Peteiro, C. Algae as Food and Food Supplements in Europe; EUR 30779 EN; JRC125913; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-40548-1. [Google Scholar] [CrossRef]
- Hayden, H.S.; Blomster, J.; Maggs, C.A.; Silva, P.C.; Stanhope, M.J.; Waaland, J.R. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 2003, 38, 277–294. [Google Scholar] [CrossRef]
- Rybak, A. Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecol. Indic. 2018, 85, 253–261. [Google Scholar] [CrossRef]
- Steinhagen, S.; Karez, R.; Weinberger, F. Cryptic, alien and lost species: Molecular diversity of Ulva sensu lato along the German coasts of the North and Baltic Seas. Eur. J. Phycol. 2020, 54, 466–483. [Google Scholar] [CrossRef]
- Zertuche-González, J.A.; Sandoval-Gil, J.M.; Rangel-Mendoza, L.K.; Gálvez-Palazuelos, A.I.; Guzmán-Calderón, J.M.; Yarish, C. Seasonal and Interannual Production of Sea Lettuce (Ulva sp.) in Outdoor Cultures Based on Commercial Size Ponds. J. World Aquac. Soc. 2021, 52, 1047–1058. [Google Scholar] [CrossRef]
- Sebok, S.; Hanelt, D. Cultivation of the brackish-water macroalga Ulva lactuca in wastewater from land-based fish and shrimp aquacultures in Germany. Aquaculture 2023, 571, 739463. [Google Scholar] [CrossRef]
- Augyte, S.; Kim, J.K.; Yarish, C. Seaweed aquaculture—From historic trends to current innovation. J. World Aquac. Soc. 2021, 52, 1004–1008. [Google Scholar] [CrossRef]
- Kübler, J.E.; Dudgeon, S.; Bush, D. Climate change challenges and opportunities for seaweed aquaculture in California, USA. J. World Aquac. Soc. 2021, 52, 1069–1080. [Google Scholar] [CrossRef]
- Zheng, Y.; Jin, R.; Zhang, X.; Wang, Q.; Wu, J. The considerable environmental benefits of seaweed aquaculture in China. Stoch. Environ. Res. Risk Assess. 2019, 33, 1203–1221. Available online: https://www.researchgate.net/publication/333413291_The_considerable_environmental_benefits_of_seaweed_aquaculture_in_China (accessed on 10 June 2024). [CrossRef]
- Weinberger, F.; Paalme, T.; Wikström, S.A. Seaweed resources of the Baltic Sea, Kattegat and German and Danish North Sea coasts. Bot. Mar. 2020, 63, 61–72. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.; Cheung, W.; Sumaila, R. Global estimates of suitable areas for marine algae farming. Environ. Res. Lett. 2023, 18, 064028. [Google Scholar] [CrossRef]
- REMEDIA (Remediation of Marine Environment and Development of Innovative Aquaculture: Exploitation of Edible/Not Edible Biomass). Available online: https://remedialife.eu/wp-content/uploads/2023/08/5.-REPLICABILITY-PLAN.pdf (accessed on 12 April 2024).
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular No. 1229; FAO: Rome, Italy, 2021; p. 37. [Google Scholar] [CrossRef]
- UMF (Union for the Mediterranean). Towards a Sustainable Blue Economy in the Mediterranean Region. 2021. Available online: https://ufmsecretariat.org/wp-content/uploads/2021/07/21.7.19-2021UfM.studydefEN-web.pdf (accessed on 21 January 2024).
- Lecerf, M.; Herr, D.; Thomas, T.; Elverum, C.; Delrieu, E.; Picourt, L. Coastal and Marine Ecosystems as Nature-Based Solutions in New or Updated Nationally Determined Contributions, Ocean & Climate Platform, Conservation International, IUCN, GIZ, Rare, the Nature Conservancy and WWF. 2021, p. 26. Available online: https://ocean-climate.org/wp-content/uploads/2021/06/coastal-and-marine-ecosystem-2806.pdf (accessed on 10 June 2024).
- Lyon, B.G.; Lyon, C.E. Meat quality: Sensory and instrumental evaluations. In Poultry Meat Processing; Sams, A.R., Ed.; CRC Press: New York, NY, USA, 2001; pp. 97–120. [Google Scholar]
- Plantinga, G. The Perception of Consumers about Algae as Alternative Protein Source: A Systematic Literature Review. Bachelor’s Thesis, WUR, Wageningen, The Netherlands, 2020; p. 36. Available online: https://edepot.wur.nl/520803 (accessed on 10 June 2024).
- ASC-MSC Seaweed Standard. 2017. Available online: https://www.asc-aqua.org/wp-content/uploads/2017/11/ASC-MSC-Seaweed-Standard.pdf (accessed on 26 January 2024).
- Griskevicius, V.; Tybur, J.M.; Van den Bergh, B. Going green to be seen: Status, reputation, and conspicuous conservation. J. Personal. Soc. Psychol. 2010, 98, 392–404. [Google Scholar] [CrossRef]
- GFCM (General Fisheries Commission for the Mediterranean). Report of the Workshop on the Status and Future of Seaweed Farming in the Mediterranean and the Black Sea. 2021. Available online: https://www.fao.org/gfcm/technical-meetings/detail/en/c/1442598/ (accessed on 25 January 2024).
- B-Blue. Available online: https://keep.eu/projects/25082/Building-the-blue-biotechno-EN/ (accessed on 25 January 2023).
- Cebrian, E.; Tamburello, L.; Verdura, J.; Guarnieri, G.; Medrano, A.; Linares, C.; Hereu, B.; Garrabou, J.; Cerrano, C.; Galobart, C.; et al. A Roadmap for the restoration of Mediterranean macroalgal forests. Front. Mar. Sci. 2021, 8, 709219. [Google Scholar] [CrossRef]
Species | The Global Annual Production (in Thousand Tons, Live Weight) | |||||
---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | Total (%) in 2020 | |
Saccharina japonica Royal Kombu, Sea tangle or Japanese kelp | 5380.9 | 5699.1 | 6525.6 | 10,313.7 | 12,469.8 | 35.5 |
Eucheuma spp. | 214.3 | 983.9 | 3472.6 | 10,182.1 | 8129.4 | 23.2 |
Gracilaria spp. | 55.5 | 933.2 | 1657.1 | 3767.0 | 5180.4 | 14.8 |
Undaria pinnatifida Wakame, Sea mustard | 311.1 | 2439.7 | 1505.1 | 2215.6 | 2810.6 | 8.0 |
Porphyra spp./Pyropia spp. Nori, Laver | 424.9 | 703.1 | 1040.7 | 1109.9 | 2220.2 | 6.3 |
Kappaphycus alvarezii Elkhorn sea moss | 649.5 | 1283.5 | 1884.2 | 1751.8 | 1604.1 | 4.6 |
Sargassum fusiforme Fusiform sargassum | 12.1 | 115.6 | 97.0 | 209.3 | 292.9 | 0.8 |
Eucheuma denticulatum Spiny eucheuma | 85.3 | 174.5 | 265.5 | 280.8 | 154.1 | 0.4 |
Subtotal of eight important species in total aquatic algae production (%) | 67.3 | 83.2 | 81.5 | 96.0 | 93.7 | 93.7 |
Total aquatic algae production | 10,595.6 | 14,831.3 | 20,174.3 | 31,073.5 | 35,077.6 | 100 |
Country | Species | Production Process | Annual Production (Wet Weight/Tonnes) | Application |
---|---|---|---|---|
Spain (Mediterranean) | Ulva sp. | Onshore aquaculture | 0–10 | Food, personal care, plant and soil nutrition |
Spain | Saccharina sp., | Wild harvesting | 0–10 | Food |
Spain | Himanthalia elongata, Undaria sp. | Wild harvesting | 0–10 | Food |
Spain | Laminaria ochroleuca, Palmaria palmata, Saccharina latissima | Wild harvesting | 0–10 | Food |
Spain | Gracilaria sp., Ulva sp. | Aquaculture | 10–100 | Food |
Spain | Codium sp., Gracilaria sp., Ulva sp. | Wild harvesting | 10–100 | Food |
Spain | Codium sp., Himanthalia elongata, Porphyra sp., Ulva sp., Undaria sp. | Wild harvesting | 10–100 | Food |
Spain | Chondrus crispus, Codium sp., Gigartina pistillata, Himanthalia elongata, Laminaria ochroleuca, Mastocarpus stellatus, Porphyra sp., Saccharina latissima, Ulva sp., Undaria sp. | Wild harvesting | 100–1000 | - |
Spain | Codium sp., Ulva sp., Undaria sp. | Wild harvesting and aquaculture | 100–1000 | Food |
Spain | - | Wild harvesting | 10,000–100,000 | Hydrocolloids |
France | Alaria esculenta, Saccharina latissima, Undaria sp. | Offshore aquaculture | 10–100 | Food, personal care |
France | - | Wild harvesting and aquaculture | 10–100 | Feed |
France | Alaria sp., Chondrus crispus, Fucus sp., Himanthalia elongata, Palmaria palmata, Phymatolithon calcareum, Porphyra sp., Saccharina latissima, Ulva sp., Undaria sp. Porphyra sp., Undaria pinnatifida | Wild harvesting | 10–100 | - |
France | - | Wild harvesting | 10–100 | Food |
France | Alaria sp., Himanthalia elongata, Palmaria palmata | Wild harvesting | 10–100 | Food |
France | Laminaria digitata, Palmaria palmata | Wild harvesting | 10–100 | Plant and soil nutrition |
France (Mediterranean) | Ulva rigida | Aquaculture and wild harvesting | 100–1000 | Bioplastics |
France | Saccharina latissima, Palmaria palmata | Aquaculture, IMTA | 100–10,000 | - |
France | Himanthalia elongata, Palmaria palmata, Porphyra sp., Ulva sp., Undaria sp. | Wild harvesting | 100–10,000 | Food |
France | Himanthalia elongata, Palmaria palmata, Porphyra sp., Saccharina latissima, Ulva sp., Undaria sp. | Wild harvesting | 100–10,000 | - |
France | Himanthalia elongata, Palmaria palmata, Porphyra umbilicalis, Saccharina latissima, Ulva sp., Undaria sp. | Wild harvesting | 100–10,000 | Food |
France | Himanthalia elongata, Palmara palmata, Porphyra sp., Saccharina latissima, Ulva sp., Undaria pinnatifida | Wild harvesting | 100–10,000 | Food |
France | Laminaria sp., Palmaria sp., Himanthalia elongata, Ascophyllum nodosum | Aquaculture and wild harvesting | 1000–10,000 | - |
France | Gracilaria sp., Gelidium corneum, Kappaphycus alvarezii, Eucheuma denticulatum | Wild harvesting and aquaculture | 1000–10,000 | Hydrocolloids |
France | Ulva sp. | Wild harvesting | 1000–10,000 | - |
France | Sargassum sp., Solieria sp., Ulva sp. | Wild harvesting | 1000–10,000 | - |
France | Sargassum sp. | Wild harvesting | 10,000–100,000 | - |
France | Solieria sp., Ulva sp. | Wild harvesting and aquaculture | 100,000–1,000,000 | Plant and soil nutrition, feed |
Morocco | Ulva lactuca, Gelidium corneum, Gracilaria sp., Gigartina sp., Laminaria sp. | - | 0–10 | - |
Morocco | Gelidium corneum | Wild harvesting | 1000–10,000 | Hydrocolloids |
Israel | Gracilaria sp. | Onshore aquaculture | 0–10 | Personal care, pharmaceuticals |
Israel | Ulva sp., Gracilaria sp. | Onshore aquaculture | 10–100 | Nutraceuticals, food, personal care |
Species | Common Name | Habitat | Used as Food |
---|---|---|---|
Green algae | |||
Caulerpa racemosa alien | sea grape, green caviar, grape caulerpa | tide pools, reef flats | peppery flavour, common in Polynesian, Asian and Island cuisines in salad |
Ulva clathrata | Aonori | rocks and stones, from mid-littoral to sublittoral | commonly eaten fresh as a sea vegetable or dried, particularly with eggs |
Ulva compressa | Green nori, plat darmwier | marine and estuarine, rock pools and sandy rocks, varying salinities | very popular due to fine texture and lovely fresh taste (Hawaii) |
Ulva intestinalis | Gut weed | sheltered and exposed locations, natural and artificial structure, also epiphytically, from the upper littoral pools into the sublittoral | yes |
Ulva lactuca | Sea lettuce, green laver | intertidal to shallow infra-littoral, often in tide pools, quick colonizer, blooms in the presence of nutrient run-off and fresh water input | delicate with mild flavour fresh and dried, in flakes, powders, used as a seasoning in soups and salads |
Ulva linza | Breed darmwier, bright grass kelp, welded green nori | rocks or rock pools, usually in marine water sometimes in brackish | in many cultures, due to high nutrient content and silky texture |
Ulva prolifera | Green ribbon plant | on rocks or other algae, on open coasts, estuaries and harbours, mixed with other species of the same genus | yes |
Ulva rigida | Green laver | epilithic, in the entire littoral zone to the sublittoral | used as a fresh sea vegetable by many island cultures due to high nutrient content and fresh taste |
Red algae | |||
Amphiroa cryptarthrodia | on rocks in sheltered waters, tide pools, forms large lawns | used on functional foods | |
Amphiroa fragilissima | up to 10 m depth, in seagrass meadows and rock hollows | used on functional foods | |
Chondracanthusteedei | habitats in the intertidal and subtidal zone, semi-exposed or sheltered areas | used for salads (máru) in parts of Italy | |
Gracilaria bursa-pastoris | epilithic, calm water of the upper sublittoral | yes | |
Grateloupia filicina | on rocks in pools, mid-littoral to shallow sublittoral, sporadic | yes | |
Grateloupia turuturu alien | epilithic, shallow tide pools, sand covered rocks near coast | commonly used in Japan as a sea vegetable, rich in dietary fibre | |
Hypnea spinella alien | lower intertidal to 7 m, attached to small shells or rubble, in seagrass beds | commonly eaten (boiled in coconut milk) in the Pacific and Asia | |
Nemalion elminthoides | exposed rocky shores, generally on barnacles and limpets | yes | |
Osmundea pinnatifida | Pepper dulse | perennial, intertidal and sublittoral, on exposed rocks, generally distributed, abundant | aromatic seaweed, a pepper- or curry-flavoured spice in Scotland, Ireland, and Portugal |
Plocamium cartilagineum | Cock’s comb, kammtang, kamwier, red comb weed | depths from 2 to 26 m, strong to moderate wave action, on other algae | yes |
Porphyra umbilicalis | Purple laver, pink laver, laver, nori | on rocks, mussels, in the littoral to splash zone, especially on exposed coasts | in flaked and whole leaf form, as a nori substitute, as laver, as an ingredient in snack mixes |
Brown algae | |||
Colpomenia sinuosa | Epiphytic, hard surfaces lower intertidal up to 15 m deep | yes | |
Dictyopteris plagiogramma | Limu lipoa | on hard substrates, often attached to coral fragments or scattered rocks on deep sand plains from 9 to 55 m deep | yes |
Hydroclathrus clathratus | Perforated brown seaweed | mid-littoral, wave-exposed rocks | in traditional Asian cuisine for centuries |
Petalonia fascia | on rock in the mid intertidal to shallow sublittoral, protected or semi-exposed | yes | |
Scytosiphon lomentaria | Sausage weed | Littoral, wave-exposed shores and rock pools | yes |
Treptacantha abies-marina | wave-exposed sublittoral zone | yes | |
Undaria pinnatifida alien | Wakame | shallow sublittoral zone | sweet flavour and slippery texture, dried and fresh, a delicacy in East Asian countries, miso soup and salads |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelić Mrčelić, G.; Krstulović Šifner, S.; Nerlović, V. A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea. Oceans 2024, 5, 442-465. https://doi.org/10.3390/oceans5030026
Jelić Mrčelić G, Krstulović Šifner S, Nerlović V. A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea. Oceans. 2024; 5(3):442-465. https://doi.org/10.3390/oceans5030026
Chicago/Turabian StyleJelić Mrčelić, Gorana, Svjetlana Krstulović Šifner, and Vedrana Nerlović. 2024. "A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea" Oceans 5, no. 3: 442-465. https://doi.org/10.3390/oceans5030026
APA StyleJelić Mrčelić, G., Krstulović Šifner, S., & Nerlović, V. (2024). A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea. Oceans, 5(3), 442-465. https://doi.org/10.3390/oceans5030026