Comparison of Two Methods for Measuring Sea Surface Temperature When Surfing
Abstract
:1. Introduction
2. Methodology
2.1. Equipment
2.2. Processing of Smartfin and Tidbit v2 Temperature Data
2.3. Study Sites
2.4. Auxiliary Datasets
2.4.1. Independent Temperature Measurements from Piers, Buoys, and Benthic Loggers
2.4.2. Historic SST Data Collected By Surfers
2.4.3. Photosynthetically Available Radiation Data from Satellites
2.5. Statistical Tests
3. Results and Discussion
3.1. Comparison of SST Derived from Different Methods When Surfing
3.2. Comparison of Surfing SST Data with Independent Datasets
3.3. Influence of Irradiance on Tidbit v2 Leash Measurements
3.4. Future Recommendations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azeiteiro, U.M.; Bacelar-Nicolau, L.; Resende, P.; Gonçalves, F.; Pereira, M.J. Larval fish distribution in shallow coastal waters off North Western Iberia (NE Atlantic). Estuar. Coast. Shelf Sci. 2006, 69, 554–566. [Google Scholar] [CrossRef] [Green Version]
- Bertocci, I.; Araújo, R.; Oliveira, P.; Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 2015, 52, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, E.V.; Worm, B. Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A.; Nunes, P. A global map of coastal recreation values: Results from a spatially explicit meta-analysis. Ecol. Econ. 2013, 86, 1–15. [Google Scholar] [CrossRef]
- Duarte, C. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 2017, 14, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.; Harff, J.; You, Z.J.; Zhang, H.; Wolanski, E. Sustainability of future coasts and estuaries: A synthesis. Estuar. Coast. Shelf Sci. 2016, 183, 271–274. [Google Scholar] [CrossRef]
- Jickells, T.D. Nutrient biogeochemistry of the coastal zone. Science 1998, 281, 217–222. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Bulleri, F.; Chapman, M.G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 2010, 47, 26–35. [Google Scholar] [CrossRef]
- Wernberg, T.; Russell, B.D.; Moore, P.J.; Ling, S.D.; Smale, D.A.; Coleman, M.; Steinberg, P.D.; Kendrick, G.A.; Connell, S.D. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 2011, 400, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. A global strategy for protecting vulnerable coastal populations. Science 2014, 345, 1250–1251. [Google Scholar] [CrossRef] [PubMed]
- Fedak, M. Marine animals as platforms for oceanographic sampling: A “win/win” situation for biology and operational oceanography. Mem. Natl. Inst. Polar Res. Spec. Issue 2004, 58, 133–147. [Google Scholar]
- Rudnick, D.; Davis, R.E.; Eriksen, C.C.; Fratantoni, D.M.; Perry, M.J. Underwater gliders for ocean research. Mar. Technol. Soc. J. 2004, 38, 73–84. [Google Scholar] [CrossRef]
- Shively, D.A.; Nevers, M.B.; Breitenbach, C.; Phanikumar, M.S.; Przybyla-Kelly, K.; Spoljaric, A.M.; Whitman, R.L. Prototypic automated continuous recreational water quality monitoring of nine Chicago beaches. J. Environ. Manag. 2016, 166, 285–293. [Google Scholar] [CrossRef]
- Schmidt, W.; Raymond, D.; Parish, D.; Ashton, I.G.; Miller, P.I.; Campos, C.J.; Shutler, J.D. Design and operation of a low-cost and compact autonomous buoy system for use in coastal aquaculture and water quality monitoring. Aquac. Eng. 2018, 80, 28–36. [Google Scholar] [CrossRef]
- Smale, D.A.; Moore, P.J. Variability in kelp forest structure along a latitudinal gradient in ocean temperature. J. Exp. Mar. Biol. Ecol. 2017, 486, 255–264. [Google Scholar] [CrossRef]
- Holman, R.; Haller, M. Remote sensing of the nearshore. Annu. Rev. Mar. Sci. 2013, 5, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Brewin, R.J.W.; Hyder, K.; Andersson, A.J.; Billson, O.; Bresnahan, P.J.; Brewin, T.G.; Cyronak, T.; Dall’Olmo, G.; de Mora, L.; Graham, G.; et al. Expanding aquatic observations through recreation. Front. Mar. Sci. 2017, 4, 351. [Google Scholar] [CrossRef] [Green Version]
- Boss, E.; Zaneveld, J.R.V. The effect of bottom substrate on inherent optical properties: Evidence of biogeochemical processes. Limnol. Oceanogr. 2003, 48, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.; Hull, T.; Sivyer, D.B.; Pearce, D.; Pinnegar, J.K.; Sayer, M.D.J.; Mogg, A.O.M.; Azzopardi, E.; Gontarek, S.; Hyder, K. SCUBA divers as oceanographic samplers: The potential of dive computers to augment aquatic temperature monitoring. Sci. Rep. 2016, 6, 30164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egi, S.; Cousteau, P.Y.; Pieri, M.; Cerrano, C.; Özyigit, T.; Marroni, A. Designing a Diving Protocol for Thermocline Identification Using Dive Computers in Marine Citizen Science. Appl. Sci. 2018, 8, 2315. [Google Scholar] [CrossRef] [Green Version]
- Hut, R.; Tyler, S.; van Emmerik, T. Proof of concept: Temperature-sensing waders for environmental sciences. Geosci. Instrum. Methods Data Syst. 2016, 5, 45–51. [Google Scholar] [CrossRef]
- Bresnahan, P.J.; Wirth, T.; Martz, T.R.; Andersson, A.J.; Cyronak, T.; D’Angelo, S.; Pennise, J.; Melville, W.K.; Lenain, L.; Statom, N. A sensor package for mapping pH and oxygen from mobile platforms. Methods Oceanogr. 2016, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, A.; Kemp, K.; Matthews, K.; Garrett, J.; Griffiths, D. Sonic Kayaks: Environmental monitoring and experimental music by citizens. PLoS Biol. 2017, 15, e2004044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauro, F.M.; Senstius, S.J.; Cullen, J.; Neches, R.; Jensen, R.M.; Brown, M.V.; Darling, A.E.; Givskov, M.; McDougald, D.; Hoeke, R.; et al. The Common Oceanographer: Crowdsourcing the Collection of Oceanographic Data. PLoS Biol. 2014, 12, e1001947. [Google Scholar] [CrossRef] [Green Version]
- Brewin, R.J.W.; de Mora, L.; Jackson, T.; Brewin, T.G.; Shutler, J. On the potential of surfers to monitor environmental indicators in the coastal zone. PLoS ONE 2015, 10, e0127706. [Google Scholar] [CrossRef]
- Bresnahan, P.J.; Cyronak, T.; Martz, T.; Andersson, A.; Waters, S.; Stern, A.; Richard, J.; Hammond, K.; Griffin, J.; Thompson, B. Engineering a Smartfin for surf-zone oceanography. In Proceedings of the OCEANS 2017, Anchorage, AK, USA, 18–21 September 2017; pp. 1–4. [Google Scholar]
- GCOS. Systematic Observation Requirements from Satellite-Based Data Products for Climate; Technical Report; World Meteorological Organisation (WMO): Geneva, Switzerland, 2011. [Google Scholar]
- Bojinski, S.; Verstraete, M.; Peterson, T.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Chapter Coastal Systems and Low-Lying Areas; pp. 361–409. [Google Scholar]
- Butt, T.; Russell, P.E.; Grigg, R. Surf Science: An Introduction to Waves for Surfing.; University of Hawaii Press: Honolulu, HI, USA; Alison Hodge Publishers: Cornwall, UK, 2004; p. 144. ISBN1 0 8248 2891 7 (USA). ISBN2 0 906720 36 2 (UK). [Google Scholar]
- Reineman, D.R. The utility of surfers’ wave knowledge for coastal management. Mar. Policy 2016, 67, 139–147. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; de Mora, L.; Billson, O.; Jackson, T.; Russell, P.; Brewin, T.G.; Shutler, J.; Miller, P.I.; Taylor, B.H.; Smyth, T.; et al. Evaluating operational AVHRR sea surface temperature data at the coastline using surfers. Estuar. Coast. Shelf Sci. 2017, 196, 276–289. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Smale, D.A.; Moore, P.J.; Dall’Olmo, G.; Miller, P.I.; Taylor, B.; Smyth, T.J.; Fishwick, J.R.; Yang, M. Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sens. 2018, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Smartfin website. Available online: http://smartfin.org/ (accessed on 22 November 2019).
- Bonney, R.; Shirk, J.; Phillips, T.; Wiggins, A.; Ballard, H.; Miller-Rushing, A.; Parrish, J. Next, steps for citizen science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Soto, C.; van der Meeren, G.I.; Busch, J.A.; Delany, J.; Domegan, C.; Dubsky, K.; Fauville, G.; Gorsky, G.; von Juterzenka, K.; Malfatti, F.; et al. Advancing Citizen Science for Coastal and Ocean Research; Position Paper 23; French, V., Kellett, P., Delany, J., McDonough, N., Eds.; European Marine Board: Ostend, Belgium, 2017; 112p, ISBN 978-94-92043-30-6. [Google Scholar]
- Bahr, K.D.; Jokiel, P.L.; Rodgers, K.S. Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs. Limnol. Oceanogr. Methods 2016, 14, 338–342. [Google Scholar] [CrossRef]
- Smyth, T.J.; Fishwick, J.R.; Gallienne, C.P.; Stephens, J.A.; Bale, A.J. Technology, Design, and Operation of an Autonomous Buoy System in the Western English Channel. J. Atmos. Ocean. Technol. 2010, 27, 2056–2064. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; de Mora, L.; Jackson, T.; Brewin, T.G.; Shutler, J.; Billson, O. Sea Surface Temperature (SST) Measurements Collected by Surfers around the Southern UK and Western Ireland Coastline between 2014 and 2017; British Oceanographic Data Centre—Natural Environment Research Council: Swindon, UK, 2017. [Google Scholar] [CrossRef]
- Forsythe, W.C.; Rykiel, E.J., Jr.; Stahl, R.S.; Wu, H.; Schoolfield, R.M. A model comparison for day length as a function of latitude and day of year. Ecol. Model. 1995, 80, 87–95. [Google Scholar]
- Pineda, J. Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 1991, 253, 548–549. [Google Scholar] [CrossRef]
- Checkley, D., Jr.; Lindegren, M. Sea surface temperature variability at the Scripps Institution of Oceanography Pier. J. Phys. Oceanogr. 2014, 44, 2877–2892. [Google Scholar] [CrossRef] [Green Version]
- Sinnett, G.; Feddersen, F.; Lucas, A.; Pawlak, G.; Terrill, E. Observations of nonlinear internal wave run-up to the surfzone. J. Phys. Oceanogr. 2018, 48, 531–554. [Google Scholar] [CrossRef]
- Sinnett, G.; Feddersen, F. The Nearshore Heat Budget: Effects of Stratification and Surfzone Dynamics. J. Geophys. Res. Oceans 2019, 124. [Google Scholar] [CrossRef]
- Moré, J. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis; Springer: Berlin, Germany, 1978; Chapter The Levenberg-Marquardt Algorithm: Implementation and Theory; p. 105. [Google Scholar]
- Markwardt, C.B. Nonlinear least squares fitting in IDL with MPFIT. In Proceedings of the Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series, Quebec, Canada; Bohlender, D., Dowler, P., Duran, D., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 411. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Jackson, T.; Barlow, R.; Brotas, V.; Airs, R.; Lamont, T. Influence of light in the mixed layer on the parameters of a three-component model of phytoplankton size structure. Remote Sens. Environ. 2015, 168, 437–450. [Google Scholar] [CrossRef]
- Gould, R., Jr.; Ko, D.; Ladner, S.; Lawson, T.; MacDonald, C. Comparison of Satellite, Model, and In Situ Values of Photosynthetically Available Radiation (PAR). J. Atmos. Ocean. Technol. 2019, 36, 535–555. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Cyronak, C.; Bresnahan, P.J.; Andersson, A.J.; Richard, J.; Hammond, K.; Billson, O.; de Mora, L.; Jackson, T.; Smale, D.; et al. Sea Surface Temperature (SST) Measurements Collected by Surfers around the Coastlines of the Southern UK, Western Ireland, and San Diego, US, between 2014 and 2018; British Oceanographic Data Centre—Natural Environment Research Council: Swindon, UK, 2020. [Google Scholar] [CrossRef]
- O’Brien, D.; Ponting, J. STOKE Certified: Initiating sustainability certification in surf tourism. In Handbook on Sport, Sustainability, and the Environment; McCullough, B., Kellison, T., Eds.; Milton: Routledge, UK, 2018; pp. 301–316. [Google Scholar]
- Cooper, S.; Khatib, F.; Treuille, A.; Barbero, J.; Lee, J.; Beenen, M.; Leaver-Fay, A.; Baker, D.; Popović, Z.; players, F. Predicting protein structures with a multiplayer online game. Nature 2010, 466, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewin, R.J.W.; Cyronak, T.; Bresnahan, P.J.; Andersson, A.J.; Richard, J.; Hammond, K.; Billson, O.; de Mora, L.; Jackson, T.; Smale, D.; et al. Comparison of Two Methods for Measuring Sea Surface Temperature When Surfing. Oceans 2020, 1, 6-26. https://doi.org/10.3390/oceans1010002
Brewin RJW, Cyronak T, Bresnahan PJ, Andersson AJ, Richard J, Hammond K, Billson O, de Mora L, Jackson T, Smale D, et al. Comparison of Two Methods for Measuring Sea Surface Temperature When Surfing. Oceans. 2020; 1(1):6-26. https://doi.org/10.3390/oceans1010002
Chicago/Turabian StyleBrewin, Robert J.W., Tyler Cyronak, Philip J. Bresnahan, Andreas J. Andersson, Jon Richard, Katherine Hammond, Oliver Billson, Lee de Mora, Thomas Jackson, Dan Smale, and et al. 2020. "Comparison of Two Methods for Measuring Sea Surface Temperature When Surfing" Oceans 1, no. 1: 6-26. https://doi.org/10.3390/oceans1010002