Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Testing of Material
2.2. Analysis of Fracture Surface
2.3. Statistical Analysis
3. Results
3.1. Mechanical Testing
3.2. Fractography
4. Discussion
5. Conclusions
- Laser sintering manufacturing produces specimens that have superior ultimate tensile strength and proof stress than specimens produced by soft-milled manufacturing method.
- Elastic modulus for CoCr can be calculated equally correctly using tensile testing and nanoindentation.
- Soft milling of CoCr does produce structures with small porosities throughout, likely due to escaping binding polymer.
- Those porosities contribute to reduced ultimate tensile strength and proof stress of soft-milled CoCr.
- Laser sintering and soft milling manufacturing techniques both produce CoCr structures with highly satisfactory mechanical properties.
Author Contributions
Funding
Conflicts of Interest
References
- Abduo, J.; Lyons, K. Rationale for the Use of CAD/CAM Technology in Implant Prosthodontics. Int. J. Dent. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.W.; Berzins, D.W.; Moore, B.K.; Charlton, D.G. Metal-Ceramic Alloys in Dentistry: A Review. J. Prosthodont. 2009, 18, 188–194. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. (Eds.) Phillips’ Science of Dental Materials, 12th ed.; Elsevier Health Sciences: London, UK, 2012. [Google Scholar]
- Barucca, G.; Santecchia, E.; Majni, G.; Girardin, E.; Bassoli, E.; Denti, L.; Gatto, A.; Iuliano, L.; Moskalewicz, T.; Mengucci, P. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering. Mater. Sci. Eng. C 2015, 48, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Wataha, J.C. Alloys for prosthodontic restorations. J. Prosthet. Dent. 2002, 87, 351–363. [Google Scholar] [CrossRef]
- Barazanchi, A.; Li, K.C.; Al-Amleh, B.; Lyons, K.; Waddell, J.N. Additive Technology: Update on Current Materials and Applications in Dentistry. J. Prosthodont. 2016, 26, 156–163. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Koak, J.-Y.; Heo, S.-J.; Kim, S.-K.; Ahn, J.-S.; Park, D.-S. Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques. J. Korean Acad. Prosthodont. 2014, 52, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, K.; Mori, M.; Chiba, A. Nanoarchitectured Co–Cr–Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability. Acta Biomater. 2013, 9, 6259–6267. [Google Scholar] [CrossRef]
- Li, K.C.; Prior, D.J.; Waddell, J.N.; Swain, M.V. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co–Cr dental alloys. Dent. Mater. 2015, 31, e306–e315. [Google Scholar] [CrossRef] [PubMed]
- Van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Abduo, J.; Lyons, K.; Bennamoun, M. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams. Int. J. Dent. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, K.-P.; Knauber, A.W.; Nothdurft, F.P. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy. Clin. Oral Investig. 2014, 19, 401–411. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Zinelis, S.; Eliades, G.; Al-Wazzan, K.; Al Rifaiy, M.; Al Jabbari, Y.S. Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. J. Prosthodont. 2015, 24, 303–312. [Google Scholar] [CrossRef]
- Kelly, J.R.; Benetti, P.; Rungruanganunt, P.; Della Bona, A. The slippery slope—Critical perspectives on in vitro research methodologies. Dent. Mater. 2012, 28, 41–51. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Kakar, K.; Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin. Oral Implant. Res. 2007, 18, 218–231. [Google Scholar] [CrossRef]
- Kathuria, Y. Microstructuring by selective laser sintering of metallic powder. Surf. Coat. Technol. 1999, 116, 643–647. [Google Scholar] [CrossRef]
- Wataha, J.C.; Messer, R.L. Casting alloys. Dent. Clin. N. Am. 2004, 48, 499–512. [Google Scholar] [CrossRef]
- Gokhale, A.; Patel, G. Quantitative fractographic analysis of variability in tensile ductility of a squeeze cast Al–Si–Mg base alloy. Mater. Charact. 2005, 54, 13–20. [Google Scholar] [CrossRef]
- Salak, A. Ferrous Powder Metullargy; Cambridge International Science Publishing: Cambridge, UK, 1997. [Google Scholar]
- Chawla, N.; Deng, X. Microstructure and mechanical behavior of porous sintered steels. Mater. Sci. Eng. A 2005, 390, 98–112. [Google Scholar] [CrossRef]
- Kilner, T. Static mechanical properties of cast and siner-annealed cobalt-chromium surgical implants. J. Mater. Sci. 1986, 21, 1349–1356. [Google Scholar] [CrossRef]
- Li, B.; Mukasyan, A.S.; Varma, A. Combustion synthesis of CoCrMo orthopedic implant alloys: Microstructure and properties. Mater. Res. Innov. 2003, 7, 245–252. [Google Scholar] [CrossRef]
- Denti, L. Evaluation of performance of cast and laser-sintered cr-co alloys for dental applications. Int. J. Appl. Eng. Rest. 2017, 12, 3801–3809. [Google Scholar]
- Li, K.C. Microstructure and Phase Stability of Three Dental Cobalt Chromium Alloys Used for Porcelain-Fused-to-Metal Restorations during Thermal Processing. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2015. [Google Scholar]
- Xiang, N.; Xin, X.-Z.; Chen, J.; Wei, B. Metal–ceramic bond strength of Co–Cr alloy fabricated by selective laser melting. J. Dent. 2012, 40, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Jang, S.-H.; Kim, Y.K.; Son, J.S.; Min, B.K.; Kim, K.; Kwon, T.-Y. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques. Materials 2016, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhu, H.; Gai, X.; Wang, Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J. Prosthet. Dent. 2014, 111, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Eichberger, M.; Hoffman, R.; Noack, F.; Schweiger, J.; Edelhoff, D.; Beuer, F. A novel cad/cam base metal compared to conventional cocrmo alloys:An in-vitro study of the long-term. Oral Health Dent. Manag. 2014, 13, 17. [Google Scholar]
Specimens | Brand | Manufacturer | Co | Cr | Mo | Si | Mn | Fe |
---|---|---|---|---|---|---|---|---|
LS CoCr * | CobaltChrome (MP1) | EOS | 60–65% | 26–30% | 5–7% | <1% | <1% | <1% |
SM CoCr † | Sintron | Amaan Girrbach | 66% | 28% | 5% | <1% | <1% | <1% |
Manufacturing Method | Elastic Modulus (GPa) | Ultimate Tensile Strength (MPa) | 0.2% Off Set Proof Stress (MPa) |
---|---|---|---|
LS CoCr * | 196.2 (26.3) | 1090.3 (27.4) | 608.8 (23.8) |
SM CoCr † | 180.4 (59.9) | 915.9 (42.7) | 549.4 (30.8) |
Stat signific. (p < 0.05) | N.S. ‡ (p > 0.05) | S § (p < 0.01) | S § (p < 0.01) |
Manufacturing Method | Elastic Modulus (GPa) | S.D. | Hardness (GPa) | S.D. |
---|---|---|---|---|
LS CoCr * | 197.0 | 9.2 | 4.4 | 0.2 |
SM CoCr † | 181.8 | 7.0 | 3.3 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barazanchi, A.; Li, K.C.; Al-Amleh, B.; Lyons, K.; Waddell, J.N. Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium. Prosthesis 2020, 2, 313-320. https://doi.org/10.3390/prosthesis2040028
Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium. Prosthesis. 2020; 2(4):313-320. https://doi.org/10.3390/prosthesis2040028
Chicago/Turabian StyleBarazanchi, Abdullah, Kai Chun Li, Basil Al-Amleh, Karl Lyons, and J. Neil Waddell. 2020. "Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium" Prosthesis 2, no. 4: 313-320. https://doi.org/10.3390/prosthesis2040028
APA StyleBarazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2020). Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium. Prosthesis, 2(4), 313-320. https://doi.org/10.3390/prosthesis2040028