Presence of Aminoglycoside and β-Lactam-Resistant Pseudomonas aeruginosa in Raw Milk of Cows
Abstract
:1. Introduction
2. Materials and Method
2.1. P. aeruginosa Strains
2.2. Diagnosis of Bovine CM
2.3. Antimicrobial Susceptibility Testing
2.4. Antibiotic Resistance Genes and Virulence Factors Analysis
2.5. Next-Generation Sequencing
3. Results
3.1. The Isolation and Identification of P. aeruginosa in Cow’s Raw Milk
3.2. Antimicrobial Resistance Phenotypes
3.3. Antimicrobial Resistance Genotypes
3.4. Virulence Factor Detection
3.5. Analysis of Antimicrobial Resistance Genes and Virulence Factors Based on Next-Generation Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell Infect. Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef] [PubMed]
- Cleto, S.; Matos, S.; Kluskens, L.; Vieira, M.J. Characterization of contaminants from a sanitized milk processing plant. PLoS ONE 2012, 7, e40189. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy. Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; McCubbin, K.D.; Speksnijder, D.; Dufour, S.; Middleton, J.R.; Ruegg, P.L.; Lam, T.; Kelton, D.F.; McDougall, S.; Godden, S.M.; et al. Invited review: Selective treatment of clinical mastitis in dairy cattle. J. Dairy. Sci. 2023, 106, 3761–3778. [Google Scholar] [CrossRef]
- Poizat, A.; Bonnet-Beaugrand, F.; Rault, A.; Fourichon, C.; Bareille, N. Antibiotic use by farmers to control mastitis as influenced by health advice and dairy farming systems. Prev. Vet. Med. 2017, 146, 61–72. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Frey, Y.; Rodriguez, J.P.; Thomann, A.; Schwendener, S.; Perreten, V. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J. Dairy. Sci. 2013, 96, 2247–2257. [Google Scholar] [CrossRef]
- Kawai, K.; Shinozuka, Y.; Uchida, I.; Hirose, K.; Mitamura, T.; Watanabe, A.; Kuruhara, K.; Yuasa, R.; Sato, R.; Onda, K.; et al. Control of Pseudomonas mastitis on a large dairy farm by using slightly acidic electrolyzed water. Anim. Sci. J. 2017, 88, 1601–1605. [Google Scholar] [CrossRef]
- Minst, K.; Märtlbauer, E.; Miller, T.; Meyer, C. Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents. J. Dairy. Sci. 2012, 95, 6957–6962. [Google Scholar] [CrossRef]
- Suleiman, T.S.; Karimuribo, E.D.; Mdegela, R.H. Prevalence of bovine subclinical mastitis and antibiotic susceptibility patterns of major mastitis pathogens isolated in Unguja island of Zanzibar, Tanzania. Trop. Anim. Health Prod. 2018, 50, 259–266. [Google Scholar] [CrossRef]
- Scaccabarozzi, L.; Leoni, L.; Ballarini, A.; Barberio, A.; Locatelli, C.; Casula, A.; Bronzo, V.; Pisoni, G.; Jousson, O.; Morandi, S.; et al. Pseudomonas aeruginosa in Dairy Goats: Genotypic and Phenotypic Comparison of Intramammary and Environmental Isolates. PLoS ONE 2015, 10, e0142973. [Google Scholar] [CrossRef] [PubMed]
- Sela, S.; Hammer-Muntz, O.; Krifucks, O.; Pinto, R.; Weisblit, L.; Leitner, G. Phenotypic and genotypic characterization of Pseudomonas aeruginosa strains isolated from mastitis outbreaks in dairy herds. J. Dairy. Res. 2007, 74, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Schauer, B.; Wald, R.; Urbantke, V.; Loncaric, I.; Baumgartner, M. Tracing Mastitis Pathogens-Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd. Animals 2021, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Tartor, Y.H.; Gharieb, R.M.A.; Abd El-Aziz, N.K.; El Damaty, H.M.; Enany, S.; Khalifa, E.; Attia, A.S.A.; Abdellatif, S.S.; Ramadan, H. Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. Front. Cell Infect. Microbiol. 2021, 11, 761417. [Google Scholar] [CrossRef]
- Banerjee, S.; Batabyal, K.; Joardar, S.N.; Isore, D.P.; Dey, S.; Samanta, I.; Samanta, T.K.; Murmu, S. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Vet. World 2017, 10, 738–742. [Google Scholar] [CrossRef]
- Arbab, S.; Ullah, H.; Wei, X.; Wang, W.; Ahmad, S.U.; Zhang, J. Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different beta–Lactam resistance Phenotypes from Shandong province China. Braz. J. Biol. 2021, 83, e247061. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.; Jiang, J.; Gong, Z.; Zhu, H.; Wang, K.; Zhou, Q.; Tian, Y.; Qin, A.; Yang, Z.; et al. Isolation and characterization of multidrug-resistant Klebsiella pneumoniae from raw cow milk in Jiangsu and Shandong provinces, China. Transbound. Emerg. Dis. 2020, 68, 1033–1039. [Google Scholar] [CrossRef]
- Ashraf, A.; Imran, M. Diagnosis of bovine mastitis: From laboratory to farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202. [Google Scholar] [CrossRef]
- Duarte, C.M.; Freitas, P.P.; Bexiga, R. Technological advances in bovine mastitis diagnosis: An overview. J. Vet. Diagn. Invest. 2015, 27, 665–672. [Google Scholar] [CrossRef]
- Edward, E.A.; El Shehawy, M.R.; Abouelfetouh, A.; Aboulmagd, E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol. 2023, 23, 161. [Google Scholar] [CrossRef]
- Ghanem, S.M.; Abd El-Baky, R.M.; Abourehab, M.A.S.; Fadl, G.F.M.; Gamil, N. Prevalence of Quorum Sensing and Virulence Factor Genes Among Pseudomonas aeruginosa Isolated from Patients Suffering from Different Infections and Their Association with Antimicrobial Resistance. Infect. Drug Resist. 2023, 16, 2371–2385. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Mangar, P.; Choudhury, A.; Kumar, A.; Saha, A.; Basu, P.; Saha, D. Characterization of a hemolytic and antibiotic-resistant Pseudomonas aeruginosa strain S3 pathogenic to fish isolated from Mahananda River in India. PLoS ONE 2024, 19, e0300134. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute. 2024. Available online: https://clsi.org/standards/products/elearning/education/using-m100-online-learning-performance-standards-for-antimicrobial-susceptibility-testing/ (accessed on 19 March 2025).
- Nie, L.; Lv, Y.; Yuan, M.; Hu, X.; Nie, T.; Yang, X.; Li, G.; Pang, J.; Zhang, J.; Li, C.; et al. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm. Sin. B 2014, 4, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Ali, Z.; Riaz, M.; Zeshan, B.; Wattoo, J.I.; Aslam, M.N. Evaluation of Antibiotic Resistance and Virulence Genes among Clinical Isolates of Pseudomonas aeruginosa from Cancer Patients. Asian Pac. J. Cancer Prev. 2020, 21, 1333–1338. [Google Scholar] [CrossRef]
- Dumas, J.L.; van Delden, C.; Perron, K.; Kohler, T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol. Lett. 2006, 254, 217–225. [Google Scholar] [CrossRef]
- Fazeli, N.; Momtaz, H. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections. Iran. Red. Crescent Med. J. 2014, 16, e15722. [Google Scholar] [CrossRef]
- Ellington, M.J.; Kistler, J.; Livermore, D.M.; Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J. Antimicrob. Chemother. 2007, 59, 321–322. [Google Scholar] [CrossRef]
- Jeon, B.C.; Jeong, S.H.; Bae, I.K.; Kwon, S.B.; Lee, K.; Young, D.; Lee, J.H.; Song, J.S.; Lee, S.H. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 beta-lactamase in korea. J. Clin. Microbiol. 2005, 43, 2241–2245. [Google Scholar] [CrossRef]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Moubareck, C.; Bremont, S.; Conroy, M.C.; Courvalin, P.; Lambert, T. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009, 53, 3579–3581. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, G.; Ying, H. Investigation of resistance genes and virulence factors in drug-resistant Pseudomonas aeruginosa isolated from burn department. Chin. J. Nosocomiology 2014, 24, 1580–1582+1589. [Google Scholar]
- Qian, Z.; Hui, P.; Han, L.; Ling-Zhi, Y.; Bo-Shun, Z.; Jie, Z.; Wan-Li, G.; Nan, W.; Shi-Jin, J.; Zhi-Jing, X. Serotypes and virulence genes of Pseudomonas aeruginosa isolated from mink and its pathogenicity in mink. Microb. Pathog. 2020, 139, 103904. [Google Scholar] [CrossRef] [PubMed]
- Lanotte, P.; Watt, S.; Mereghetti, L.; Dartiguelongue, N.; Rastegar-Lari, A.; Goudeau, A.; Quentin, R. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J. Med. Microbiol. 2004, 53, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, N.; Dhall, S.; Chhibber, S.; Harjai, K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int. J. Mol. Epidemiol. Genet. 2014, 5, 125–134. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Y.; Yang, Q.W.; Fan, X.; Brown, M.; Kong, F.; Xu, Y.C. Antimicrobial susceptibility of Pseudomonas aeruginosa in China: A review of two multicentre surveillance programmes, and application of revised CLSI susceptibility breakpoints. Int. J. Antimicrob. Agents 2012, 40, 445–449. [Google Scholar] [CrossRef]
- Gharieb, R.; Saad, M.; Khedr, M.; El Gohary, A.; Ibrahim, H. Occurrence, virulence, carbapenem resistance, susceptibility to disinfectants and public health hazard of Pseudomonas aeruginosa isolated from animals, humans and environment in intensive farms. J. Appl. Microbiol. 2022, 132, 256–267. [Google Scholar] [CrossRef]
- Elshafiee, E.A.; Nader, S.M.; Dorgham, S.M.; Hamza, D.A. Carbapenem-resistant Pseudomonas aeruginosa Originating from Farm Animals and People in Egypt. J. Vet. Res. 2019, 63, 333–337. [Google Scholar] [CrossRef]
- Walsh, T.R.; Payne, D.J.; MacGowan, A.P.; Bennett, P.M. A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible beta-lactamases: A cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. J. Antimicrob. Chemother. 1995, 35, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Gales, A.C.; Streit, J.M.; Huband, M.D.; Tsakris, A.; Jones, R.N. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S63–S68. [Google Scholar] [CrossRef] [PubMed]
- Picao, R.C.; Poirel, L.; Gales, A.C.; Nordmann, P. Diversity of beta-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob. Agents Chemother. 2009, 53, 3908–3913. [Google Scholar] [CrossRef] [PubMed]
- Gales, A.C.; Menezes, L.C.; Silbert, S.; Sader, H.S. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. J. Antimicrob. Chemother. 2003, 52, 699–702. [Google Scholar] [CrossRef]
- Lee, S.; Park, Y.J.; Kim, M.; Lee, H.K.; Han, K.; Kang, C.S.; Kang, M.W. Prevalence of Ambler class A and D beta-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J. Antimicrob. Chemother. 2005, 56, 122–127. [Google Scholar] [CrossRef]
- Hong, J.S.; Yoon, E.J.; Lee, H.; Jeong, S.H.; Lee, K. Clonal Dissemination of Pseudomonas aeruginosa Sequence Type 235 Isolates Carrying blaIMP-6 and Emergence of blaGES-24 and blaIMP-10 on Novel Genomic Islands PAGI-15 and -16 in South Korea. Antimicrob. Agents Chemother. 2016, 60, 7216–7223. [Google Scholar] [CrossRef]
- Kim, M.J.; Bae, I.K.; Jeong, S.H.; Kim, S.H.; Song, J.H.; Choi, J.Y.; Yoon, S.S.; Thamlikitkul, V.; Hsueh, P.R.; Yasin, R.M.; et al. Dissemination of metallo-beta-lactamase-producing Pseudomonas aeruginosa of sequence type 235 in Asian countries. J. Antimicrob. Chemother. 2013, 68, 2820–2824. [Google Scholar] [CrossRef]
- Hogan, J.; Larry Smith, K. Coliform mastitis. Vet. Res. 2003, 34, 507–519. [Google Scholar] [CrossRef]
- Petridou, E.J.; Fragkou, I.A.; Lafi, S.Q.; Giadinis, N.D. Outbreak of Pseudomonas aeruginosa mastitis in a dairy cow herd in northern Greece and its control with an autogenous vaccine. Pol. J. Vet. Sci. 2021, 24, 303–305. [Google Scholar] [CrossRef]
- Ohnishi, M.; Sawada, T.; Hirose, K.; Sato, R.; Hayashimoto, M.; Hata, E.; Yonezawa, C.; Kato, H. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from mastitis. Vet. Microbiol. 2011, 154, 202–207. [Google Scholar] [CrossRef]
- Arslan, S.; Eyi, A.; Ozdemir, F. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. J. Dairy. Sci. 2011, 94, 5851–5856. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhou, L.; Tao, X.; Li, P.; Zheng, X.; Zhang, W.; Tan, Z. Antimicrobial resistance survey and whole-genome analysis of nosocomial P. Aeruginosa isolated from eastern Province of China in 2016–2021. Ann. Clin. Microbiol. Antimicrob 2024, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Finnan, S.; Morrissey, J.P.; O’Gara, F.; Boyd, E.F. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol. 2004, 42, 5783–5792. [Google Scholar] [CrossRef] [PubMed]
- Tartor, Y.H.; El-Naenaeey, E.Y. RT-PCR detection of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa. Cell. Mol. Biol. 2016, 62, 56–62. [Google Scholar]
- Feltman, H.; Schulert, G.; Khan, S.; Jain, M.; Peterson, L.; Hauser, A.R. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001, 147, 2659–2669. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′-3′) | Amplicon Length (bp) | Reference |
---|---|---|---|
16S rDNA | AGAGTTTGATCCTGGCTCAG | 1514 | [17] |
TACGGCTACCTTGTTACGACT | |||
aac(3′)-I | TTACGCAGCAGCAACGATGT | 402 | [24] |
GTTGGCCTCATGCTTGAGGA | |||
aac(6′)-Ib | CATGACCTTGCGATGCTCTA | 490 | [24] |
GCTCGAATGCCTGGCGTCTT | |||
aac(6′)-II | TTCATGTCCGCGAGCACCCC | 178 | [24] |
GACTCTTCCGCCATCGCTCT | |||
ant(2″)-Ia | GCTCACGCAACTGGTCCAGA | 719 | [24] |
GGCACGCAAGACCTCAACCT | |||
ant(3″)-I | TGATTTGCTGGTTACGGTGAC | 284 | [24] |
CGCTATGTTCTCTTGCTTTTG | |||
blaAIM | CTGAAGGTGTACGGAAACAC | 445 | [25] |
GTTCGGCCACCTCGAATTG | |||
blaPDC | CGGCTCGGTGAGCAAGACCTTC | 218 | [26] |
AGTCGCGGATCTGTGCCTGGTC | |||
blaCTX-M | ATGTGCAGYACCAGTAARGT | 593 | [27] |
TGGGTRAARTARGTSACCAGA | |||
blaGIM | TCGACACACCTTGGTCTGAA | 477 | [28] |
AACTTCCAACTTTGCCATGC | |||
blaIMP | CATGGTTTGGTGGTTCTTGT | 488 | [29] |
TTATTCCGGAAGTCCCTGT | |||
blaKPC | CGTCTAGTTCTGCTGTCTTG | 439 | [25] |
CTTGTCATCCTTGTTAGGCG | |||
blaNDM-1 | GGTTTGGCGATCTGGTTTTC | 621 | [25] |
CGGAATGGCTCATCACGATC | |||
blaOXA-51 | TAATGCTTTGATCGGCCTTG | 353 | [30] |
TGGATTGCACTTCATCTTGG | |||
blaSHV | GGTTATGCGTTATATTCGCC | 867 | [27] |
TTAGCGTTGCCAGTGCTC | |||
blaSIM | TACAAGGGATTCGGCATCG | 570 | [28] |
TAATGGCCTGTTCCCATGTG | |||
blaSPM | AAAATCTGGGTACGCAAACG | 271 | [25] |
ACATTATCCGCTGGAACAGG | |||
blaTEM | GCCAACTTACTTCTGACAACGA | 440 | [25] |
ATCCGCCTCCATCCAGTCT | |||
blaVEB | ATTTCCCGATGCAAAGCGT | 542 | [31] |
TTATTCCGGAAGTCCCTGT | |||
blaVIM | ATTGGTCTATTTGACCGCGTC | 780 | [29] |
TGCTACTCAACGACTGAGCG | |||
exoS | TCAGCAGAGTCCGTCTTTCGCC | 407 | [32] |
GCCAGGCGGGAGTGCTCCCGG | |||
exoT | TCAGCAGAACCCGTCTTTCGT | 407 | [32] |
GCCAGGCGGCGTGTGATCCTTC | |||
exoU | CCGTCGCAGGCAGCGCATAAGTCC | 420 | [32] |
GAACGCCGCCGGGCTCATACCTGA | |||
pyo | TGCCGGTACGACTCACGAGTG | 231 | [32] |
GTTCTGGCTTCCTGGAGGGGT | |||
aprA | CAGACCCTGACCCACGAGAT | 452 | [33] |
CATTGCCCTTCAACCCG | |||
toxA | GGTAACCAGCTCAGCCACA | 301 | [34] |
TGCCTTCCCAGGTATCGT | |||
plcH | GCACGTGGTCATTCCTGATGC | 608 | [27] |
TCCGTAGGCGTCGACGTAC | |||
algD | ATCAGCATCTTTGGTTTGGG | 346 | [33] |
TGTGGCGTTCGGACTTCT | |||
lasB | CGTCTCCTACCTGATTCCCG | 413 | [33] |
GCACCTTCATGTACAGCTTGTG | |||
lasI | CGTGCTCAAGTGTTCAAGG | 295 | [35] |
TACAGTCGGAAAAGCCCAG | |||
lasR | AAGTGGAAAATTGGAGTGGAG | 130 | [35] |
GTAGTTGCCGACGACGATGAAG | |||
rh1L | TTCATCCTCCTTTAGTCTTCCC | 155 | [35] |
TTCCAGCGATTCAGAGAGC | |||
rh1R | TGCATTTATCGATCAGGGC | 133 | [35] |
CACTTCCTTTTCCAGGACG |
Sample ID | GenBank Accession Number | Health/Mastitis | Farm | Gentamicin | Tobramycin | Ceftazidime | AME Genes | β-lactamase Genes | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Kirby–Bauer (mm) | MIC (μg/mL) | Kirby–Bauer (mm) | MIC (μg/mL) | Kirby–Bauer (mm) | MIC (μg/mL) | ||||||
P2 | MN314754 | Health | A | R | 16 | S | S | aac(6′)-Ib | blaOXA-51 | ||
P17 | MN314764 | Health | A | R | 16 | S | S | aac(6′)-Ib | |||
P18 | MN314753 | Health | A | R | 16 | S | S | ant(3″)-I | blaNDM-1 | ||
P49 | MN314614 | Health | B | R | 32 | S | S | ||||
P50 | MN314609 | Health | B | R | 32 | S | S | aac(6′)-Ib, ant(3″)-I | |||
P52 | MN314607 | Health | B | S | S | R | 20 | aac(6′)-II | |||
P56 | MN314600 | Health | B | R | 8 | R | 16 | S | aac(6′)-II, ant(3″)-I | ||
P57 | MN314598 | Health | B | R | 16 | R | 16 | S | aac(6′)-II, ant(3″)-I | ||
P61 | MN314603 | Health | B | R | 32 | R | 16 | S | ant(3″)-I | blaPDC | |
P62 | MN314602 | Health | B | S | R | 16 | S | aac(6′)-II, ant(3″)-I | |||
P78 | MN314679 | Health | B | R | 16 | R | 16 | S | aac(6′)-II, ant(3″)-I | ||
P79 | MN314675 | Health | B | R | 8 | S | S | aac(6′)-II, ant(3″)-I | |||
P81 | MN314604 | Health | B | S | R | 16 | S | aac(6′)-II, ant(3″)-I | |||
P82 | MN314601 | Health | B | R | 16 | R | 8 | S | aac(6′)-II, ant(3″)-I | ||
P90 | MN314610 | Health | B | R | 8 | R | 8 | S | aac(6′)-II | blaPDC | |
P136 | MN314801 | Health | D | S | S | R | 640 | blaPDC | |||
P150 | MN314828 | Health | D | R | 32 | S | S | blaOXA-51 | |||
P151 | MN314818 | Health | D | S | S | S | aac(6′)-Ib, ant(3″)-I | blaPDC |
Farm | Health/Mastitis | Aminoglycoside Modifying Enzyme Genes | Β-Lactamase Encoding Genes | Sample ID |
---|---|---|---|---|
A | 14/0 | blaNDM-1 | P1, P29 | |
blaOXA-51 | P1, P4 | |||
ant(3″)-I | P3, P27 | |||
aac(6′)-Ib, | P25, P27, P29 | |||
aac(6′)-II | P25 | |||
B | 70/10 | blaNDM-1 | P99 | |
blaPDC | P31, P33, P45, P68, P85, P94, P104 | |||
ant(3″)-I | P30, P32, P39, P48, P51, P53, P54, P58, P60, P63, P64, P67, P68, P70, P72, P74, P76, P80, P84, P86, P87, P89, P95, P97, P100, P102, P103, P106, P109 | |||
aac(6′)-II | P42, P43, P64, P84, P91 | |||
C | 19/0 | blaPDC | P116, P124, P125, P133 | |
ant(3″)-I | P117, P119, P125, P131 | |||
aac(6′)-II | P115 | |||
D | 19/0 | blaPDC | P152 | |
ant(3″)-I | P134, P135, P140, P141, P146 | |||
aac(6′)-Ib, | P135, P142, P144, P155 | |||
aac(6′)-II | P142 |
Sample ID | Farm | Virulence Factors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
exoS | exoT | exoU | pyo | aprA | toxA | plcH | algD | lasB | lasI | lasR | rh1L | rh1R | ||
P2 | A | + | + | + | - | + | - | + | - | + | - | + | + | + |
P17 | A | - | - | + | - | + | - | + | + | + | + | + | + | + |
P18 | A | + | + | - | - | + | - | + | + | + | + | + | + | + |
P49 | B | + | - | - | - | - | - | - | - | - | - | - | + | + |
P50 | B | + | - | - | + | + | + | + | + | + | + | + | + | + |
P52 | B | + | - | + | - | + | + | + | + | + | + | + | + | + |
P56 | B | + | + | - | - | - | + | + | - | - | + | + | - | - |
P57 | B | + | + | + | - | + | + | + | + | + | + | + | + | + |
P61 | B | - | - | - | - | - | - | - | + | - | + | - | - | - |
P62 | B | + | + | - | - | + | + | + | + | + | + | + | - | - |
P78 | B | + | + | - | + | + | + | + | + | + | + | + | + | + |
P79 | B | + | + | - | - | + | + | + | + | + | + | + | + | + |
P81 | B | + | + | - | - | + | - | + | + | + | + | + | + | - |
P82 | B | + | + | - | - | + | + | + | + | + | + | + | + | + |
P90 | B | - | - | - | - | - | - | + | - | + | + | - | - | + |
P136 | D | + | + | - | - | + | - | + | + | + | + | + | + | + |
P150 | D | + | + | + | - | + | - | + | + | + | + | + | + | + |
P151 | D | + | + | + | + | + | + | + | + | + | + | + | + | + |
% | 83.3 | 66.7 | 33.3 | 16.7 | 77.8 | 50.0 | 88.9 | 77.8 | 83.3 | 88.9 | 83.3 | 77.8 | 77.8 |
Sample ID | GenBank Accession Number | Farm | MLST Sequence Type | Antibiotic Resistance Genes Real-Time PCR | Antibiotic Resistance Genes_NGS | Virulence Factors Real-Time PCR | Virulence Factors_NGS |
---|---|---|---|---|---|---|---|
P2 | MN314754 | A | ST319 | aac(6′)-Ib, blaOXA-51 | blaOXA-50, blaPDC | aprA, exoS, exoT, exoU, lasB, lasR, plcH, rhlI, rhlR | algD, aprA, exoT, exoU, lasB, lasI, plcH, rhlI |
P61 | MN314603 | B | ST1435 | ant(3″)-I, blaPDC * | aac(6′)-IIa, ant(3″)-Ia, blaOXA50, blaPDC | algD, lasI | algD, aprA, exoS, exoT, exoU, lasB, lasI, plcH, rhlI, toxA |
P136 | MN314801 | D | ST1638 | blaPDC | blaOXA-50, blaPDC | algD, aprA, exoS, exoT, lasB, lasI, lasR, plcH, rhlI, rhlR | algD, aprA, exoS, exoT, lasB, lasI, plcH, rhlI, toxA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Zhu, W.; Han, S.; Jiang, H.; Chen, J.; Zhou, Z.; Hao, X.; Xu, T.; Qin, A.; Yang, Z.; et al. Presence of Aminoglycoside and β-Lactam-Resistant Pseudomonas aeruginosa in Raw Milk of Cows. Dairy 2025, 6, 13. https://doi.org/10.3390/dairy6020013
Meng Y, Zhu W, Han S, Jiang H, Chen J, Zhou Z, Hao X, Xu T, Qin A, Yang Z, et al. Presence of Aminoglycoside and β-Lactam-Resistant Pseudomonas aeruginosa in Raw Milk of Cows. Dairy. 2025; 6(2):13. https://doi.org/10.3390/dairy6020013
Chicago/Turabian StyleMeng, Yining, Wen Zhu, Shitong Han, Hui Jiang, Jie Chen, Zhou Zhou, Xiaoli Hao, Tianle Xu, Aijian Qin, Zhangping Yang, and et al. 2025. "Presence of Aminoglycoside and β-Lactam-Resistant Pseudomonas aeruginosa in Raw Milk of Cows" Dairy 6, no. 2: 13. https://doi.org/10.3390/dairy6020013
APA StyleMeng, Y., Zhu, W., Han, S., Jiang, H., Chen, J., Zhou, Z., Hao, X., Xu, T., Qin, A., Yang, Z., Shang, S., & Yang, Y. (2025). Presence of Aminoglycoside and β-Lactam-Resistant Pseudomonas aeruginosa in Raw Milk of Cows. Dairy, 6(2), 13. https://doi.org/10.3390/dairy6020013