Crude Glycerol Increases Neutral Detergent Fiber Degradability and Modulates Rumen Fermentative Dynamics of Kikuyu Grass in Non-Lactating Holstein Cows Raised in Tropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Cows, Treatments, and Experimental Design
2.3. In Situ Ruminal NDF Degradation
2.4. Rumen Fermentation Parameters
2.5. Chemical Analyses of the Feedstuffs and Diet
2.6. Calculations
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Wang, Y.; Muldoon, V.L.; Deng, S. Crude glycerol and glycerol as fuels and fuel additives in combustion applications. Renew. Sustain. Energy Rev. 2022, 159, 112206. [Google Scholar] [CrossRef]
- Serrano, C.; Ferriani, B.; Teixeira, S.; Osmari, M. Evaluation of crude glycerine inclusion in beef cattle diet: Apparent nutrient digestibility and microbial protein synthesis. Zootec. Trop. 2014, 32, 109–117. [Google Scholar]
- Andrade, G.P.; Carvalho, F.F.R.; Batista, Â.M.V.; Pessoa, R.A.S.; Costa, C.A.; Cardoso, D.B.; Vale Maciel, M. Evaluation of crude glycerin as a partial substitute of corn grain in growing diets for lambs. Small Rumin. Res. 2018, 165, 41–47. [Google Scholar] [CrossRef]
- Masera, K.; Hossain, A.K. Advancement of biodiesel fuel quality and NOx emission control techniques. Renew. Sustain. Energy Rev. 2023, 178, 113235. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Bertoco, J.P.A.; Arruda, M.C.G.; Melo Coelho, L.; Paschoaloto, J.R.; Ezequiel, J.M.B.; Almeida, M.T.C. The effect of dietary inclusion of crude glycerin on performance, ruminal fermentation, meat quality and fatty acid profile of beef cattle: Meta-analysis. Res. Vet. Sci. 2021, 140, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Giurgiu, O.V.; Berean, D.I.; Ionescu, A.; Ciupe, M.S.; Cimpean, C.R.; Radu, C.I.; Bitica, D.G.; Bogdan, S.; Bogdan, M.L. The effect of oral administration of zeolite on the energy metabolism and reproductive health of Romanian spotted breed in advanced gestation and post partum period. Vet. Anim. Sci. 2024, 23, 100333. [Google Scholar] [CrossRef]
- Drackley, J.K. Opportunities for glycerol use in dairy diets. In Proceedings of the 4th State Dairy Nutrition and Management Conference, Dubuque, IA, USA, 11–12 June 2008; pp. 113–118. [Google Scholar]
- Melendez, P.; Severino, K.; Marin, M.P.; Duchens, M. The effect of a product with three gluconeogenic precursors during the transition period on blood metabolites and milk yield in Chilean Holstein cattle. J. Appl. Anim. Res. 2018, 46, 613–617. [Google Scholar] [CrossRef]
- Hanlon, M.E.; Simoni, M.; Moorby, J.M.; Righi, F.; Tsiplakou, E.; Kantas, D.; Foskolos, A. Effects of the addition of non-fibre carbohydrates with different rumen degradation rates in dairy cow high-forage diets using the Rumen Simulation Technique. Animal 2023, 17, 100732. [Google Scholar] [CrossRef]
- Oelker, E.R.; Reveneau, C.; Firkins, J.L. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows. J. Dairy Sci. 2009, 92, 270–285. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, C.; Raza, S.H.A.; Yang, B.; Aloufi, B.H.; Alshammari, A.M.; AlGabbani, Q.; Khan, R.; Hou, S.; Gui, L. Effects of dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratio change on rumen bacterial community and ruminal fermentation parameters in Chinese black Tibetan sheep (Ovis aries). Small Rumin. Res. 2022, 216, 106793. [Google Scholar] [CrossRef]
- Mouriño, F.; Akkarawongsa, R.; Weimer, P.J. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 2001, 84, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, V.T.; Gimenes, P.A.; Udaeta, M.E.M.; Gimenes, A.L.V. Energy Storage Systems Issues Looking for Integrated Distributed Energy-Resource Planning. Proceedings 2020, 58, 15. [Google Scholar] [CrossRef]
- Ciriaco, F.M.; Henry, D.D.; Mercadante, V.R.G.; Schulmeister, T.M.; Ruiz-Moreno, M.; Lamb, G.C.; DiLorenzo, N. Effects of molasses and crude glycerol combined in a liquid supplement on ruminal fermentation in beef steers consuming bermudagrass hay. J. Anim. Sci. 2016, 94, 3851–3863. [Google Scholar] [CrossRef]
- Van Cleef, E.H.C.B.; Almeida, M.T.C.; Perez, H.L.; Paschoaloto, J.R.; Castro Filho, E.S.; Ezequiel, J.M.B. Effects of partial or total replacement of corn cracked grain with high concentrations of crude glycerin on rumen metabolism of crossbred sheep. Small Rumin. Res. 2018, 159, 45–51. [Google Scholar] [CrossRef]
- Socreppa, L.M.; Moraes, K.A.K.; Oliveira, A.S.; Batista, E.D.; Drosghic, L.; Botini, L.A.; Paula, D.C.; Stinguel, H.; Bento, F.C.; Moraes, E. Crude glycerine as an alternative energy feedstuff for beef cattle grazing tropical pasture. J. Agric. Sci. 2017, 155, 839–846. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef]
- Spanghero, M.; Zanfi, C. Impact of NDF content and digestibility of diets based on corn silage and alfalfa on intake and milk yield of dairy cows. Ital. J. Anim. Sci. 2009, 8 (Suppl. 2), 337–339. [Google Scholar] [CrossRef]
- Krueger, N.A.; Anderson, R.C.; Tedeschi, L.O.; Callaway, T.R.; Edrington, T.S.; Nisbet, D.J. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro. Bioresour. Technol. 2010, 101, 8469–8472. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.S.; Chaves, A.V.; Chaves, M.; Hernandez-Calva, K.A.; Beauchemin, S.M.; McGinn, Y.; Wang, O.M.; Harstad, T.A.M. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Anim. Feed Sci. Technol. 2011, 166, 265–268. [Google Scholar] [CrossRef]
- Almeida, V.V.S.; Oliveira, A.C.; Silva, R.R.; Ribeiro, J.S.; Oliveira, H.C.; Santos, L.S.; Lima, D.M. Crude glycerin in the supplementation of crossbred heifers in tropical pastures. Animal 2021, 15, 100088. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Huo, W.J.; Yang, W.Z.; Dong, K.H.; Huang, Y.X.; Guo, G. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livest. Sci. 2009, 121, 15–20. [Google Scholar] [CrossRef]
- Paiva, P.G.; Valle, T.A.D.; Jesus, E.F.; Bettero, V.P.; Almeida, G.F.; Bueno, I.C.S.; Bradford, B.J.; Rennó, F.P. Effects of crude glycerin on milk composition, nutrient digestibility and ruminal fermentation of dairy cows fed corn silage-based diets. Anim. Feed Sci. Technol. 2016, 212, 136–142. [Google Scholar] [CrossRef]
- Shin, J.H.; Wang, D.; Kim, S.C.; Adesogan, A.T.; Staples, C.R. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage-or cottonseed hull-based, low-fiber diets. J. Dairy Sci. 2012, 95, 4006–4016. [Google Scholar] [CrossRef]
- Paschoaloto, J.R.; Ezequiel, J.M.B.; Almeida, M.T.C.; Fávaro, V.R.; Homem Junior, A.C.; Carvalho, V.B.; Perez, H.L. Inclusion of crude glycerin with different roughages changes ruminal parameters and in vitro gas production from beef cattle. Cienc. Rural. 2016, 46, 889–894. [Google Scholar] [CrossRef]
- Dugmore, T.J. Energy and mineral content of kikuyu. In Proceedings of the Kikuyu Technology Day, KwaZulu-Natal Department of Agriculture. Directorate of Technology Development and Training, KwaZulu-Natal, South Africa, 25 November 1998; pp. 16–18. [Google Scholar]
- García, S.C.; Islam, M.R.; Clark CE, F.; Martin, P.M. Kikuyu-based pasture for dairy production: A review. Crop Pasture Sci. 2014, 65, 787–797. [Google Scholar] [CrossRef]
- Mehrez, A.Z.; Ørskov, E.R. A study of artificial fibre bag technique for determining the dig estibility of feeds in the rumen. J. Agric. Sci. 1977, 88, 645–650. [Google Scholar] [CrossRef]
- Vries, M.F.W. Estimating forage intake and quality in grazing cattle: A reconsideration of the hand-plucking method. Rangeland Ecology and Management. J. Range Manag. 1995, 48, 370–375. [Google Scholar] [CrossRef]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Echavarria, D.M.; Giraldo-Valderrama, L.A.; Marín-Gómez, A. In vitro fermentation of Pennisetum clandestinum Hochst. Ex Chiov increased methane production with ruminal fluid adapted to crude glycerol. Trop. Anim. Health Prod. 2020, 52, 565–571. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC: Arlington, VA, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Goering, H.K. Forage fiber analysis. Apparatus, reagents, procedures and some applications. Agric. Handb. 1970, 379, 20. [Google Scholar]
- NRC. The Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Giraldo, L.A.; Tejido, M.L.; Ranilla, M.J.; Ramos, S.; Carro, M.D. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci. 2008, 86, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Giraldo, L.A.; Carulla, J.E.; Calle, M.A. Metabolismo Digestivo de Razas Bovinas (Bon, Holteins, Cebú) en Pasturas Tropicales de Calidad Contrastante. Consideraciones Sobre El Mejoramiento Genético y Factores Asociados En Bovinos Criollos Colombianos y Grupos Multirraciales. 2013. [Google Scholar]
- Van Milgen, J.; Berger, L.L.; Murphy, M.R. Fractionation of substrate as an intrinsic characteristic of feedstuffs fed to ruminants. J. Dairy Sci. 1992, 75, 124–131. [Google Scholar] [CrossRef]
- Kholif, A.E. Glycerol use in dairy diets: A systemic review. Anim. Nutr. 2019, 5, 209–216. [Google Scholar] [CrossRef]
- Porcu, C.; Manca, C.; Cabiddu, A.; Dattena, M.; Gallus, M.; Pasciu, V.; Succu, S.; Naitana, S.; Berlinguer, F.; Molle, G. Effects of short-term administration of a glucogenic mixture at mating on feed intake, metabolism, milk yield and reproductive performance of lactating dairy ewes. Anim. Feed Sci. Technol. 2018, 243, 10–21. [Google Scholar] [CrossRef]
- Schröder, A.; Südekum, K.H. Glycerol as a by-product of biodiesel production in diets for ruminants. Int. Rapeseed Congr. 1999, 10, 241. [Google Scholar]
- El-Nor, S.A.; AbuGhazaleh, A.A.; Potu, R.B.; Hastings, D.; Khattab, M.S.A. Effects of differing levels of glycerol on rumen fermentation and bacteria. Anim. Feed Sci. Technol. 2010, 162, 99–105. [Google Scholar] [CrossRef]
- AbuGhazaleh, A.A.; Abo El-Nor, S.; Ibrahim, S.A. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. 2011, 95, 313–319. [Google Scholar] [CrossRef]
- Boyd, J.; Bernard, J.K.; West, J.W. Effects of feeding different amounts of supplemental glycerol on ruminal environment and digestibility of lactating dairy cows. J. Dairy Sci. 2013, 96, 470–476. [Google Scholar] [CrossRef]
- Ariko, T.; Kass, M.; Henno, M.; Fievez, V.; Kärt, O.; Kaart, T.; Ots, M. The effect of replacing barley with glycerol in the diet of dairy cows on rumen parameters and milk fatty acid profile. Anim. Feed Sci. Technol. 2015, 209, 69–78. [Google Scholar] [CrossRef]
- Kijora, C.; Bergner, H.; Götz, K.; Bartelt, J.; Szakacs, J.; Sommer, A. Research note: Investigation on the metabolism of glycerol in the rumen of bulls. Arch. Tierernahr. 1998, 51, 341–348. [Google Scholar] [CrossRef]
- Beauchemin, K. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef]
- Avila-Stagno, J.; Chaves, A.V.; Ribeiro, G.O.; Ungerfeld, E.M.; McAllister, T.A. Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. Br. J. Nutr. 2014, 111, 829–835. [Google Scholar] [CrossRef]
- Chanjula, P.; Pakdeechanuan, P.; Wattanasit, S. Effects of dietary crude glycerin supplementation on nutrient digestibility, ruminal fermentation, blood metabolites, and nitrogen balance of goats. Asian-Austral. J. Anim. Sci. 2014, 27, 365. [Google Scholar] [CrossRef]
- Sousa, J.T.L.; Vendramini, J.M.B.; Moriel, P.; Sanchez, J.M.D.; Silva, H.M.; Alencar, N.; Sousa, L.F.; Oliveira, H.M.R.; Palmer, E.A. Monensin and concentrate supplementation level affect forage ruminal measurements and forage in situ disappearance of bermudagrass fed to beef cattle. Appl. Anim. Sci. 2022, 38, 141–149. [Google Scholar] [CrossRef]
- Valencia, D.M.; Giraldo, L.A.; Marín, A.; Granja-Salcedo, Y.T.; Berchielli, T.T. Effects of different amounts of crude glycerol supplementation on dry matter intake, milk yield, and milk quality of lactating dairy cows grazing on a Kikuyu grass pasture. Sci. Agropecu. 2021, 12, 491–497. [Google Scholar] [CrossRef]
- Wang, P.; Zhiliang, T. Ammonia Assimilation in Rumen Bacteria: A Review. Anim. Biotechnol. 2013, 24, 107–128. [Google Scholar] [CrossRef]
- Abbasi, I.H.R.; Abbasi, F.; Liu, L.; Bodinga, B.M.; Abdel-Latif, M.A.; Swelum, A.A.; Mohamed, M.A.E.; Cao, Y. Rumen-protected methionine a feed supplement to low dietary protein: Effects on microbial population, gases production and fermentation characteristics. Anim. AMB Express. 2019, 9, 93. [Google Scholar] [CrossRef]
Kikuyu 4 | Supplement | |
---|---|---|
Feedstuffs (g/kg DM) | ||
Wheat bran | - | 404.2 |
Ground corn | - | 313.8 |
Soybean meal | - | 150.1 |
Cottonseed | - | 65.4 |
Sugarcane molasses | - | 49.7 |
Fish meal | - | 9.8 |
Vitamin and mineral premix 1 | - | 2.5 |
Calcium bicarbonate | - | 2.5 |
Magnesium oxide | - | 2.0 |
Chemical composition (g/kg DM) | ||
Dry matter | 174.7 ± 1.4 | 903.1 ± 1.1 |
Crude protein | 219.1 ± 1.6 | 235.6 ± 0.5 |
Neutral detergent fiber | 622.4 ± 1.6 | 416.4 ± 1.1 |
Acid detergent fiber | 274.0 ± 1.7 | 153.8 ± 1.1 |
Lignin | 41.4 ± 0.6 | 22.0 ± 0.3 |
Ether extract | 25.8 ± 0.5 | 36.0 ± 0.2 |
Ash | 88.0 ± 1.4 | 71.2 ± 0.7 |
Non-fiber carbohydrates (NFCs) 2 | 44.7 ± 1.2 | 240.8 ± 1.0 |
In vitro dry matter digestibility (IVDMD) 3 | 601.0 ± 2.9 | 645.0 ± 1.3 |
Item | DR35 | DR45 |
---|---|---|
Dry matter | 170.3 | 178.6 |
Crude protein | 239.2 | 209.7 |
Neutral detergent fiber | 542.7 | 599.0 |
Acid detergent fiber | 227.0 | 249.6 |
Lignin | 36.8 | 39.2 |
Ether extract | 26.1 | 19.2 |
Ash | 116.0 | 114.0 |
Non-fiber carbohydrates (NFCs) 1 | 76.0 | 58.1 |
In vitro dry matter digestibility (IVDMD) 2 | 712.0 | 601.0 |
Crude Glycerol Level in Rumen (g/animal/day) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
G0 | G500 | G1000 | G1500 | SEM 2 | CG 3 | DR 4 | CG × DR | ||
In situ ruminal degradation parameters of NDF 1 | |||||||||
b | DR35 | 0.954 | 0.904 | 0.926 | 0.932 | 0.017 | 0.715 | <0.001 | 0.001 |
DR45 | 0.848 b | 0.933 a | 0.903 a | 0.879 ab | |||||
c, h−1 | DR35 | 0.035 b | 0.051 a | 0.051 a | 0.046 a | 0.003 | 0.083 | <0.001 | 0.006 |
DR45 | 0.033 | 0.033 | 0.037 | 0.034 | |||||
Lag, h | DR35 | 1.20 | 1.10 | 1.30 | 1.30 | 0.122 | 0.896 | 0.340 | 0.238 |
DR45 | 1.30 | 1.40 | 1.30 | 1.30 | |||||
EDNDF | DR35 | 0.393 | 0.449 | 0.462 | 0.446 | 0.015 | 0.030 | <0.001 | 0.294 |
DR45 | 0.333 | 0.364 | 0.384 | 0.352 |
Crude Glycerol Level in the Rumen (g/animal/day) 1 | ||||||
---|---|---|---|---|---|---|
G0 | G500 | G1000 | G1500 | SEM 3 | p-Value 4 | |
Mol/100 mol | ||||||
Acetate (A) | 65.4 a | 51.1 b | 52.3 b | 47.9 c | 0.74 | <0.001 |
Propionate (P) | 20.8 c | 25.9 b | 24.2 b | 29.1 a | 0.63 | <0.001 |
Butyrate (B) | 12.0 b | 21.2 a | 20.6 a | 21.5 a | 0.69 | <0.001 |
Other VFA 2 | 1.7 | 1.6 | 1.8 | 1.6 | 0.33 | 0.155 |
A:P (mol:mol) | 3.2 a | 2.0 b | 2.1 b | 1.7 c | 0.06 | <0.001 |
Total VFA (mM) | 104.4 | 109.4 | 108.7 | 99.4 | 4.75 | 0.237 |
pH | 6.4 | 6.3 | 6.3 | 6.2 | 0.06 | 0.363 |
N-NH3 (mg/dl) | 21.5 a | 18.9 ab | 17.1 b | 17.0 b | 1.32 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Echavarria, D.M.; Granja-Salcedo, Y.T.; Noriega-Marquez, J.G.; Valderrama, L.A.G.; Vargas, J.A.C.; Berchielli, T.T. Crude Glycerol Increases Neutral Detergent Fiber Degradability and Modulates Rumen Fermentative Dynamics of Kikuyu Grass in Non-Lactating Holstein Cows Raised in Tropical Conditions. Dairy 2024, 5, 480-490. https://doi.org/10.3390/dairy5030037
Valencia-Echavarria DM, Granja-Salcedo YT, Noriega-Marquez JG, Valderrama LAG, Vargas JAC, Berchielli TT. Crude Glycerol Increases Neutral Detergent Fiber Degradability and Modulates Rumen Fermentative Dynamics of Kikuyu Grass in Non-Lactating Holstein Cows Raised in Tropical Conditions. Dairy. 2024; 5(3):480-490. https://doi.org/10.3390/dairy5030037
Chicago/Turabian StyleValencia-Echavarria, Diana Marcela, Yury Tatiana Granja-Salcedo, Jorge Guillermo Noriega-Marquez, Luis Alfonso Giraldo Valderrama, Julián Andrés Castillo Vargas, and Telma Teresinha Berchielli. 2024. "Crude Glycerol Increases Neutral Detergent Fiber Degradability and Modulates Rumen Fermentative Dynamics of Kikuyu Grass in Non-Lactating Holstein Cows Raised in Tropical Conditions" Dairy 5, no. 3: 480-490. https://doi.org/10.3390/dairy5030037
APA StyleValencia-Echavarria, D. M., Granja-Salcedo, Y. T., Noriega-Marquez, J. G., Valderrama, L. A. G., Vargas, J. A. C., & Berchielli, T. T. (2024). Crude Glycerol Increases Neutral Detergent Fiber Degradability and Modulates Rumen Fermentative Dynamics of Kikuyu Grass in Non-Lactating Holstein Cows Raised in Tropical Conditions. Dairy, 5(3), 480-490. https://doi.org/10.3390/dairy5030037