Effects of Exogenous Fibrolytic Enzyme Derived from Trichoderma reesei on Rumen Degradation Characteristics and Degradability of Low-Tannin Whole Plant Faba Bean Silage in Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Sample and Chemical Analyses
2.2. Enzyme Preparation
2.3. In Situ Study
2.4. In Vitro Study
2.5. Rumen Degradation Characteristics and Statistical Analyses
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirement of Dairy Cattle, 7th ed.; National Research Council, National Academy of Science: Washington, DC, USA, 2001.
- Patrick, C.H.; Randy, D.S.; David, K.C.; Daniel, J.U.; Lisa, M.B.; Tina, K.S. Understanding NDF Digestibility of Forages. Focus Forage 2001, 3, 1–3. [Google Scholar]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 1999, 82, 391–403. [Google Scholar] [CrossRef]
- Rode, L.M.; Yang, W.Z.; Beauchemin, K.A. Fibrolytic enzyme supplements for dairy cows in early lactation. J. Dairy Sci. 1999, 82, 2121–2126. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Colombatto, D.; Morgavi, D.P.; Yang, W.Z. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 2003, 81, E37–E47. [Google Scholar] [CrossRef]
- Colombatto, D.; Morgavi, D.P.; Furtado, A.F.; Beauchemin, K.A. Screening of exogenous enzymes for ruminant diets: Relationship between biochemical characteristics and in vitro ruminal degradation. J. Anim. Sci. 2003, 81, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Eun, J.-S.; Beauchemin, K.A.; Schulze, H. Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J. Dairy Sci. 2007, 90, 1440–1451. [Google Scholar] [CrossRef] [Green Version]
- Refat, B.; Christensen, D.A.; McKinnon, J.J.; Yang, W.; Beattie, A.D.; McAllister, T.A.; Eun, J.-S.; Abdel-Rahman, G.A.; Yu, P. Effect of fibrolytic enzymes on lactational performance, feeding behavior, and digestibility in high-producing dairy cows fed a barley silage–based diet. J. Dairy Sci. 2018, 101, 7971–7979. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysi, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Canadian Council on Animal Care. Guide to the Care and Use of Experimental Animals, 2nd ed.; CCAC: Ottawa, ON, Canada, 1993; Volume 1. [Google Scholar]
- Goering, H.K.; Soest, P.J.V. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1970.
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, S.; Van Straalen, W.M.; Subnel, A.P.J.; Meijer, R.G.M.; Steg, A.; Wever, C.J.G.; Blok, M.C. The Dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 1994, 40, 139–155. [Google Scholar] [CrossRef]
- Yu, P.; Goelema, J.O.; Leury, B.J.; Tamminga, S.; Egan, A.R. An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: A review. Anim. Feed Sci. Technol. 2002, 99, 141–176. [Google Scholar] [CrossRef]
- Feng, P.; Hunt, C.W.; Pritchard, G.T.; Julien, W.E. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci. 1996, 74, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Elwakeel, E.A.; Titgemeyer, E.C.; Johnson, B.J.; Armendariz, C.K.; Shirley, J.E. Fibrolytic enzymes to increase the nutritive value of dairy feedstuffs. J. Dairy Sci. 2007, 90, 5226–5236. [Google Scholar] [CrossRef] [Green Version]
- ZoBell, D.R.; Wiedmeier, R.D.; Olson, K.C.; Treacher, R. The effect of an exogenous enzyme treatment on production and carcass characteristics of growing and finishing steers. Anim. Feed Sci. Technol. 2000, 87, 279–285. [Google Scholar] [CrossRef]
- Lewis, G.E.; Hunt, C.W.; Sanchez, W.K.; Treacher, R.; Pritchard, G.T.; Feng, P. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J. Anim. Sci. 1996, 74, 3020–3028. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, A.I.; Marichal, M.D.J.; Carriquiry, M. Comparison of dry matter and neutral detergent fibre degradation of fibrous feedstuffs as determined with in situ and in vitro gravimetric procedures. Anim. Feed Sci. Technol. 2010, 161, 49–57. [Google Scholar] [CrossRef]
- Spanghero, M.; Boccalon, S.; Gracco, L.; Gruber, L. NDF degradability of hays measured in situ and in vitro. Anim. Feed Sci. Technol. 2003, 104, 201–208. [Google Scholar] [CrossRef]
- Robinson, P.H.; Mathews, M.C.; Fadel, J.G. Influence of storage time and temperature on in vitro digestion of neutral detergent fibre at 48 h, and comparison to 48 h in sacco neutral detergent fibre digestion. Anim. Feed Sci. Technol. 1999, 80, 257–266. [Google Scholar] [CrossRef]
- Meyer, J.H.; Mackie, R.I. Microbiological evaluation of the intraruminal in sacculus digestion technique. Appl. Environ. Microbiol. 1986, 51, 622–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, I.; Bárcena, R.; Pinos-Rodríguez, J.M.; Cobos, M.; Carreón, L.; Ortega, M.E. Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants. Ital. J. Anim. Sci. 2010, 9, e8. [Google Scholar] [CrossRef] [Green Version]
- Van Straalen, W. Modelling of Nitrogen Flow and Excretion in Dairy Cows; Landbouw Universiteit: Wageningen, The Netherlands, 1995. [Google Scholar]
- Yu, P.; Christensen, D.A.; McKinnon, J.J.; Markert, J.D. Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Can. J. Anim. Sci. 2011, 83, 279–290. [Google Scholar] [CrossRef]
- Colombatto, D.; Mould, F.L.; Bhat, M.K.; Owen, E. Influence of exogenous fibrolytic enzyme level and incubation pH on the in vitro ruminal fermentation of alfalfa stems. Anim. Feed Sci. Technol. 2007, 137, 150–162. [Google Scholar] [CrossRef]
- Allen, M.S. Physical constraints on voluntary intake of forages by ruminants. J. Anim. Sci. 1996, 74, 3063–3075. [Google Scholar] [CrossRef] [Green Version]
- Oba, M.; Allen, M.S. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 1. feeding behavior and nutrient utilization. J. Dairy Sci. 2000, 83, 1333–1341. [Google Scholar] [CrossRef]
- Hristov, A.N.; McAllister, T.A.; Cheng, K.-J. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: Effects on nutrient digestion in cattle fed a barley grain diet. J. Anim. Sci. 2000, 78, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; McAllister, T.A.; Rode, L.M.; Beauchemin, K.A.; Morgavi, D.P.; Nsereko, V.L.; Iwaasa, A.D.; Yang, W. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 2001, 85, 325–332. [Google Scholar] [CrossRef] [Green Version]
Items 1 | Whole Plant Faba Bean Silage |
---|---|
DM, % | 45.7 |
OM, % DM | 92.19 |
Ash, % DM | 7.81 |
Ether Extract, % DM | 1.09 |
Protein Profile | |
CP, % DM | 21.9 |
SCP, % DM | 7.5 |
SCP, % CP | 34.1 |
ADICP, % DM | 1.50 |
ADICP, % CP | 6.9 |
NDICP, % DM | 2.17 |
NDICP, % CP | 9.9 |
Carbohydrate profile | |
Starch, % DM | 23.7 |
aNDF, % DM | 39.2 |
ADF, % DM | 34.7 |
Lignin, % DM | 5.2 |
NFC, % DM | 32.11 |
NSC, % DM | 24.3 |
Item | DM Degradability of Whole Plant Faba Bean Silage (%) | NDF Degradability of Whole Plant Faba Bean Silage (%) |
---|---|---|
Dose level of fibrolytic enzymes (mL/kg) | ||
Control (0) | 53.49 | 12.59 |
0.25 | 51.83 | 13.98 |
0.50 | 53.37 | 18.85 |
0.75 | 56.45 | 27.16 |
1.00 | 56.54 | 23.78 |
1.25 | 55.97 | 20.15 |
1.50 | 56.47 | 20.84 |
SEM | 0.797 | 2.000 |
In situ incubation time (Time) | ||
0 h | 30.23 | 5.45 |
6 h | 43.58 | 9.63 |
24 h | 67.45 | 19.89 |
48 h | 78.24 | 43.52 |
SEM | 0.631 | 1.632 |
Statistical Analysis | p value | p value |
Dose level | 0.0002 | <0.0001 |
Time | <0.0001 | <0.0001 |
Dose level × Time Interaction | 0.1033 | 0.3905 |
Orthogonal Polynomial Contrast for FETR dose level | p value | p value |
Linear | <0.0001 | 0.0001 |
Quadratic | 0.4049 | 0.0002 |
Cubic | 0.0245 | 0.5151 |
Orthogonal Polynomial Contrast for incubation time | p value | p value |
Linear | <0.0001 | <0.0001 |
Quadratic | <0.0001 | 0.0107 |
Cubic | 0.0382 | 0.4071 |
Item | DM Degradability of Whole Plant Faba Bean Silage (%) | NDF Degradability of Whole Plant Faba Bean Silage (%) |
---|---|---|
Dose level of fibrolytic enzymes (mL/kg) | ||
Control | 55.52 | 16.75 |
0.25 | 52.79 | 17.05 |
0.50 | 53.12 | 30.26 |
0.75 | 55.50 | 16.75 |
1.00 | 56.02 | 22.48 |
1.25 | 54.62 | 17.05 |
1.50 | 57.69 | 21.33 |
SEM 2 | 0.768 | 1.583 |
In situ incubation time (Time) | ||
0 h | 32.71 | 3.81 |
6 h | 44.23 | 5.82 |
24 h | 68.00 | 28.31 |
48 h | 75.22 | 43.90 |
SEM 2 | 0.664 | 1.296 |
Statistical Analysis | p value | p value |
Dose level | <0.0001 | 0.6695 |
Time | <0.0001 | 0.0058 |
Dose level × Time Interaction | 0.9429 | <0.0001 |
Orthogonal Polynomial Contrast for dose level | p value | p value |
Linear | <0.0001 | 0.6695 |
Quadratic | 0.0029 | 0.0058 |
Cubic | 0.0799 | <0.0001 |
Orthogonal Polynomial Contrast for incubation time | p value | p value |
Linear | <0.0001 | <0.0001 |
Quadratic | <0.0001 | 0.0031 |
Cubic | 0.9133 | 0.0005 |
Comparison In Vitro (Daisy-II) vs. In Situ Assay-Biological Approach | Correlation Analysis In Vitro (Daisy-II) vs. In Situ Biological Approach | ||||||
---|---|---|---|---|---|---|---|
Items | Mean In vitro | Mean biological | Difference | SED | p Value | r | p Value |
Degradability of dry matter (DMD) | |||||||
Individual incubation time | |||||||
DMD at 0 h incubation (%, n = 14) | 32.71 | 30.23 | 2.48 | 0.632 | 0.0017 | 0.31 | 0.2762 |
DMD at 6 h incubation (%, n = 14) | 44.23 | 43.58 | 0.65 | 1.071 | 0.5538 | 0.20 | 0.5013 |
DMD at 24 h incubation (%, n = 14) | 68.00 | 67.45 | 0.55 | 0.858 | 0.5322 | 0.28 | 0.3381 |
DMD at 48 h incubation (%, n = 14) | 75.22 | 78.24 | −3.02 | 0.986 | 0.0077 | 0.15 | 0.6055 |
Overall (n = 56) | |||||||
DMD (%) | 55.04 | 54.87 | 0.17 | 0.511 | 0.7476 | 0.98 | <0.0001 |
Degradability of neutral detergent fibre (NDFD) | |||||||
Individual incubation time | |||||||
NDFD at 0 h incubation (%, n = 14) | 3.81 | 5.45 | −1.64 | 2.415 | 0.5093 | 0.06 | 0.8343 |
NDFD at 6 h incubation (%, n = 14) | 5.82 | 9.63 | −3.82 | 2.757 | 0.1896 | −0.24 | 0.4166 |
NDFD at 24 h incubation (%, n = 14) | 28.31 | 19.89 | 8.42 | 2.155 | 0.0018 | 0.14 | 0.6250 |
NDFD at 48 h incubation (%, n = 14) | 43.90 | 43.52 | 0.38 | 2.503 | 0.8808 | 0.12 | 0.6912 |
Overall (n = 56) | |||||||
DNDF (%) | 20.46 | 19.62 | 0.84 | 1.352 | 0.5382 | 0.82 | <0.0001 |
Item | Kd_DM (%/h) | T0_DM (h) | S_DM (%) | D_DM (%) | U_DM (%) | BDM (g/kg DM) | EDDM (g/kg DM) |
---|---|---|---|---|---|---|---|
Dose level of fibrolytic enzymes (mL/kg) | |||||||
Control | 6.99 | 1.89 | 25.10 | 49.11 | 25.80 | 545.1 | 454.9 |
0.25 | 4.69 | 1.08 | 25.32 | 56.26 | 18.42 | 602.1 | 397.9 |
0.50 | 5.58 | 2.20 | 28.80 | 49.28 | 21.93 | 531.7 | 468.4 |
0.75 | 6.23 | 1.42 | 28.14 | 48.90 | 22.97 | 516.4 | 483.6 |
1.00 | 4.94 | 0.98 | 28.15 | 50.90 | 20.95 | 552.7 | 447.3 |
1.25 | 4.93 | 1.33 | 28.19 | 50.79 | 21.03 | 562.1 | 437.9 |
1.50 | 5.35 | 2.14 | 29.24 | 50.74 | 22.03 | 538.1 | 461.9 |
SEM | 0.895 | 0.796 | 1.414 | 2.688 | 2.753 | 24.28 | 24.28 |
In situ methods | |||||||
In situ Nylon bag | 6.19 | 2.09 | 26.55 b | 55.21 a | 18.24 b | 528.7 b | 471.3 a |
In situ ANKOM | 4.87 | 1.06 | 28.57 a | 46.50 b | 24.93 a | 570.7 a | 429.2 b |
Orthogonal Polynomial Contrast for dose level (p value) | |||||||
Linear | 0.258 | 0.990 | 0.017 | 0.759 | 0.380 | 0.542 | 0.542 |
Quadratic | 0.497 | 0.505 | 0.326 | 0.901 | 0.737 | 0.666 | 0.666 |
Cubic | 0.548 | 0.539 | 0.543 | 0.415 | 0.286 | 0.843 | 0.843 |
Statistical Analysis (p value) | |||||||
Dose level | 0.454 | 0.875 | 0.172 | 0.520 | 0.636 | 0.313 | 0.314 |
In situ methods (trial) | 0.047 | 0.101 | 0.049 | 0.0004 | 0.0043 | 0.033 | 0.033 |
Item | Kd_NDF (%/h) | T0_NDF (h) | W+D (%) | U_NDF (%) | BNDF (%) | BNDF (g/kg DM) | EDNDF (%) | EDNDF (g/kg DM) |
---|---|---|---|---|---|---|---|---|
Dose level of fibrolytic enzymes (mL/kg) | ||||||||
Control | 3.58 | 1.55 | 67.52 | 32.48 | 54.3 | 169.1 | 45.67 | 127.3 |
0.25 | 3.03 | 5.09 | 94.40 | 5.60 | 40.0 | 124.2 | 60.02 | 167.7 |
0.50 | 3.65 | 4.49 | 87.40 | 12.60 | 37.3 | 115.7 | 62.76 | 175.3 |
0.75 | 2.99 | 3.08 | 94.49 | 5.52 | 39.5 | 122.6 | 60.54 | 169.1 |
1.00 | 2.56 | 2.15 | 95.16 | 4.84 | 40.0 | 124.1 | 60.04 | 167.8 |
1.25 | 2.50 | 0.88 | 93.40 | 6.60 | 42.8 | 132.9 | 57.22 | 159.8 |
1.50 | 3.62 | 6.86 | 94.55 | 5.45 | 40.2 | 125.1 | 59.77 | 166.9 |
SEM | 0.689 | 1.966 | 7.870 | 7.870 | 3.88 | 12.11 | 3.884 | 10.91 |
In situ methods | ||||||||
In situ Nylon bag | 1.79 b | 4.49 | 88.33 | 11.67 | 51.94 a | 162.2 a | 48.06 b | 135.2 b |
In situ ANKOM | 4.47 a | 2.39 | 90.80 | 9.21 | 32.06 b | 98.9 b | 67.94 a | 188.8 a |
Orthogonal Polynomial Contrast for dose level (p value) | ||||||||
Linear | 0.485 | 0.625 | 0.050 | 0.050 | 0.109 | 0.109 | 0.109 | 0.109 |
Quadratic | 0.285 | 0.593 | 0.126 | 0.126 | 0.028 | 0.028 | 0.028 | 0.028 |
Cubic | 0.221 | 0.023 | 0.306 | 0.306 | 0.050 | 0.050 | 0.050 | 0.050 |
Statistical Analysis (p value) | ||||||||
Dose level | 0.547 | 0.356 | 0.188 | 0.188 | 0.088 | 0.088 | 0.088 | 0.088 |
In situ methods (trial) | <0.001 | 0.172 | 0.683 | 0.683 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-C.; Guevara-Oquendo, V.H.; Refat, B.; Yu, P. Effects of Exogenous Fibrolytic Enzyme Derived from Trichoderma reesei on Rumen Degradation Characteristics and Degradability of Low-Tannin Whole Plant Faba Bean Silage in Dairy Cows. Dairy 2022, 3, 303-313. https://doi.org/10.3390/dairy3020023
Yang J-C, Guevara-Oquendo VH, Refat B, Yu P. Effects of Exogenous Fibrolytic Enzyme Derived from Trichoderma reesei on Rumen Degradation Characteristics and Degradability of Low-Tannin Whole Plant Faba Bean Silage in Dairy Cows. Dairy. 2022; 3(2):303-313. https://doi.org/10.3390/dairy3020023
Chicago/Turabian StyleYang, Jen-Chieh, Victor H. Guevara-Oquendo, Basim Refat, and Peiqiang Yu. 2022. "Effects of Exogenous Fibrolytic Enzyme Derived from Trichoderma reesei on Rumen Degradation Characteristics and Degradability of Low-Tannin Whole Plant Faba Bean Silage in Dairy Cows" Dairy 3, no. 2: 303-313. https://doi.org/10.3390/dairy3020023
APA StyleYang, J. -C., Guevara-Oquendo, V. H., Refat, B., & Yu, P. (2022). Effects of Exogenous Fibrolytic Enzyme Derived from Trichoderma reesei on Rumen Degradation Characteristics and Degradability of Low-Tannin Whole Plant Faba Bean Silage in Dairy Cows. Dairy, 3(2), 303-313. https://doi.org/10.3390/dairy3020023