Using Imidazolium in the Construction of Hybrid 2D and 3D Lead Bromide Pseudoperovskites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses
2.2.1. (IMI)(MA)Pb2Br6 (1)
2.2.2. (IMI)(FA)PbBr4 (2)
2.3. Characterization
2.3.1. X-ray Powder Diffraction (XRPD) Structural Analysis
2.3.2. X-ray Fluorescence Measurements
2.3.3. Diffuse Reflectance UV–Vis Spectroscopy
2.3.4. Thermal Characterization
3. Results and Discussion
3.1. Synthetic Comments
3.2. Comparative Crystal Structure Analysis
3.3. UV–Vis Diffuse Reflectance Measurements
3.4. Thermal Stability Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, X.; Zhou, J.; Han, B.; Liu, X.; Zhang, Y.; Zhou, H. Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 1842–1849. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, Z.-K.; Xiao, L.-X.; Zhang, C.-F.; Yang, S.-Y.; Chen, B.-B.; Ge, H.-T.; Tian, Q.-S.; Jin, Y.; Liao, L.-S. Optimization of Low-Dimensional Components of Quasi-2D Perovskite Films for Deep-Blue Light-Emitting Diodes. Adv. Mater. 2019, 31, 1904319. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Gangishetty, M.K.; Abdi-Jalebi, M.; Chin, S.-H.; bin Mohd Yusoff, A.R.; Congreve, D.N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H.J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Kong, J.; Li, L.; Yang, J. A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12, 4390. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Zhang, Y.; Han, Z.; He, Z.; Zou, Y.; Xu, X. Recent Progress on Perovskite Photodetectors for Narrowband Detection. Adv. Photonics Res. 2022, 3, 2100335. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, F. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791. [Google Scholar] [CrossRef]
- Li, G.; Su, Z.; Li, M.; Lee, H.K.H.; Datt, R.; Hughes, D.; Wang, C.; Flatken, M.; Köbler, H.; Jerónimo-Rendon, J.J.; et al. Structure and Performance Evolution of Perovskite Solar Cells under Extreme Temperatures. Adv. Energy Mater. 2022, 12, 2202887. [Google Scholar] [CrossRef]
- Schlipf, J.; Hu, Y.; Pratap, S.; Bießmann, L.; Hohn, N.; Porcar, L.; Bein, T.; Docampo, P.; Müller-Buschbaum, P. Shedding Light on the Moisture Stability of 3D/2D Hybrid Perovskite Heterojunction Thin Films. ACS Appl. Energy Mater. 2019, 2, 1011–1018. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Duong, T.; Peng, J.; Wu, Y.; Shen, H.; Walter, D.; Nguyen, H.T.; Mozaffari, N.; Tabi, G.D.; Catchpole, K.R.; et al. Origin of Efficiency and Stability Enhancement in High-Performing Mixed Dimensional 2D–3D Perovskite Solar Cells: A Review. Adv. Funct. Mater. 2022, 32, 2009164. [Google Scholar] [CrossRef]
- Davy, M.M.; Jadel, T.M.; Qin, C.; Luyun, B.; Mina, G. Recent progress in low dimensional (quasi-2D) and mixed dimensional (2D/3D) tin-based perovskite solar cells. Sustain. Energy Fuels 2021, 5, 34–51. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Luo, D.; Hu, D.; Min, Y.; Xue, Q. Recent progress of halide perovskites for thermoelectric application. Nano Energy 2022, 94, 106949. [Google Scholar] [CrossRef]
- Pisoni, A.; Jaćimović, J.; Barišić, O.S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 2014, 5, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yue, S.-Y.; Ratnasingham, S.; Degousée, T.; Varsini, P.; Briscoe, J.; McLachlan, M.A.; Hu, M.; Fenwick, O. Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics. ACS Appl. Mater. Interfaces 2019, 11, 47507–47515. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, P.S.; Herron, N.; Guise, W.E.; Page, K.; Cheng, Y.Q.; Milas, I.; Crawford, M.K. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide. Sci. Rep. 2016, 6, 35685. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, T.J.; Schwan, L.J.; Ottosson, M.; Hagfeldt, A.; Edvinsson, T. Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction. Inorg. Chem. 2015, 54, 10678–10685. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Z.; Liu, S. Recent Progress in Single-Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Adv. Sci. 2018, 5, 1700471. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S.A. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. Ed. 2015, 54, 8208–8212. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Kerner, R.A.; Grede, A.J.; Brigeman, A.N.; Rand, B.P.; Giebink, N.C. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator. Nano Lett. 2016, 16, 4624–4629. [Google Scholar] [CrossRef] [PubMed]
- Pipitone, C.; Boldrini, S.; Ferrario, A.; Garcìa-Espejo, G.; Guagliardi, A.; Masciocchi, N.; Martorana, A.; Giannici, F. Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites. Appl. Phys. Lett. 2021, 119, 101104. [Google Scholar] [CrossRef]
- Abdul Ghani, I.B.; Khalid, M.; Hussain, M.I.; Hussain, M.M.; Ashraf, R.; Wang, J. Recent advancement in perovskite solar cell with imidazole additive. Mater. Sci. Semicond. Process. 2022, 148, 106788. [Google Scholar] [CrossRef]
- Yao, Z.-S.; Guan, H.; Shiota, Y.; He, C.-T.; Wang, X.-L.; Wu, S.-Q.; Zheng, X.; Su, S.-Q.; Yoshizawa, K.; Kong, X.; et al. Giant anisotropic thermal expansion actuated by thermodynamically assisted reorientation of imidazoliums in a single crystal. Nat. Commun. 2019, 10, 4805. [Google Scholar] [CrossRef]
- Smółka, S.; Mączka, M.; Drozdowski, D.; Stefańska, D.; Gągor, A.; Sieradzki, A.; Zaręba, J.K.; Ptak, M. Effect of Dimensionality on Photoluminescence and Dielectric Properties of Imidazolium Lead Bromides. Inorg. Chem. 2022, 61, 15225–15238. [Google Scholar] [CrossRef]
- Guo, Y.-Y.; McNulty, J.A.; Mica, N.A.; Samuel, I.D.W.; Slawin, A.M.Z.; Bühl, M.; Lightfoot, P. Structure-directing effects in (110)-layered hybrid perovskites containing two distinct organic moieties. Chem. Commun. 2019, 55, 9935–9938. [Google Scholar] [CrossRef]
- TOPAS-R, v.3.0; Bruker AXS: Karlsruhe, Germany, 2005.
- Spek, A. LEPAGE—An MS-DOS program for the determination of the metrical symmetry of a translation lattice. J. Appl. Crystallogr. 1988, 21, 578–579. [Google Scholar] [CrossRef]
- Dollase, W. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 1986, 19, 267–272. [Google Scholar] [CrossRef]
- Williams, T.; Kelley, C.; Lang, R.; Kotz, D.; Campbell, J. Gnuplot v.5.4: An Interactive Plotting Program. 2021. Available online: http://www.gnuplot.info (accessed on 2 May 2023).
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Dursun, I.; De Bastiani, M.; Turedi, B.; Alamer, B.; Shkurenko, A.; Yin, J.; El-Zohry, A.M.; Gereige, I.; Al Saggaf, A.; Mohammed, O.F.; et al. CsPb2Br5 Single Crystals: Synthesis and Characterization. ChemSusChem 2017, 10, 3746–3749. [Google Scholar] [CrossRef] [PubMed]
- López, C.A.; Abia, C.; Alvarez-Galván, M.C.; Hong, B.-K.; Martínez-Huerta, M.V.; Serrano-Sánchez, F.; Carrascoso, F.; Castellanos-Gómez, A.; Fernández-Díaz, M.T.; Alonso, J.A. Crystal Structure Features of CsPbBr3 Perovskite Prepared by Mechanochemical Synthesis. ACS Omega 2020, 5, 5931–5938. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Frazer, L.; Clark, D.J.; Kim, Y.S.; Rhim, S.H.; Freeman, A.J.; Ketterson, J.B.; Jang, J.I.; Kanatzidis, M.G. Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. J. Am. Chem. Soc. 2015, 137, 6804–6819. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Mao, L.; Malliakas, C.D.; Kanatzidis, M.G. Structure–Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites. Inorg. Chem. 2017, 56, 56–73. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Wang, S.; Feild, C.A.; Chess, C.A.; Guloy, A.M. Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets. Science 1995, 267, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Schueller, E.C.; Laurita, G.; Fabini, D.H.; Stoumpos, C.C.; Kanatzidis, M.G.; Seshadri, R. Crystal Structure Evolution and Notable Thermal Expansion in Hybrid Perovskites Formamidinium Tin Iodide and Formamidinium Lead Bromide. Inorg. Chem. 2018, 57, 695–701. [Google Scholar] [CrossRef] [PubMed]
- McGovern, L.; Futscher, M.H.; Muscarella, L.A.; Ehrler, B. Understanding the Stability of MAPbBr3 versus MAPbI3: Suppression of Methylammonium Migration and Reduction of Halide Migration. J. Phys. Chem. Lett. 2020, 11, 7127–7132. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, B.; Cavallo, C.; Ciccioli, A.; Gigli, G.; Latini, A. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Sci. Rep. 2016, 6, 31896. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y. A program to calculate the strain tensor from two sets of unit-cell parameters. In Comparative Crystal Chemistry; Hazen, R., Finger, L., Eds.; Wiley: New York, NY, USA, 1982; pp. 92–102. [Google Scholar]
- Kaminski, W. WinTensor, v.1.5. 2014. Available online: http://www.wintensor.com (accessed on 18 April 2023).
Parameter | (IMI)(MA)Pb2Br6 | (IMI)(FA)PbBr4 | (IMI)(GU)PbBr4 [27] |
---|---|---|---|
Chemical formula | C4H11Br6N3Pb2 | C4H10Br4N4Pb | C4H11Br4N5Pb |
Fw, amu | 994.97 | 640.96 | 656.01 |
Crystal system | Hexagonal | Triclinic | Triclinic |
Space group | P63/mmc | P-1 | P-1 |
a (Å) | 9.0885(1) | 6.0996(4) | 6.1106(4) |
b (Å) | =a | 9.0669(8) | 9.2753(5) |
c (Å) | 13.8787(1) | 13.1358(8) | 13.0429(9) |
α (o) | 90 | 92.931(3) | 93.474(9) |
β (o) | 90 | 92.212(4) | 92.726(9) |
γ (o) | 120 | 91.885(6) | 91.258(8) |
V (Å3) | 992.80(2) | 724.53(9) | 736.82(8) |
Z | 2 | 2 | 2 |
Molar volume, V/Z (Å3) | 496.40 | 362.26 | 368.41 |
T (K) | 293 | 293 | 298 |
λ, (Å) | Cu-Kα12, 1.5418 | Cu-Kα12, 1.5418 | Mo-Kα12, 0.71075 |
Method | Powder X-ray diffraction | Powder X-ray diffraction | Single crystal X-ray diffraction |
μ (mm−1) | 45.6 | 34.69 | 22.27 |
ρcalc (g cm−3) | 3.320 | 2.938 | 2.957 |
2θ—range (°) | 10–105 | 6–105 | 5.5–50 |
Rp, Rwp | 0.066–0.092 | 0.050–0.067 | n.a. |
RBragg | 0.089 | 0.040 | 0.065 |
Parameter | (IMI)(MA)Pb2Br6 | (IMI)(FA)PbBr4 | (IMI)(GA)PbBr4 [27] |
---|---|---|---|
Pb…Pb (Å) | 4.03; 6.00 | 6.10–6.39 | 6.06–6.23 |
Pb-Br (Å) | 3.000(1)–3.040(1) | 2.88(1); 2.96(1) t 3.014(17)–3.196(6) b | 2.911(2); 2.933(2) t 3.036(2)–3.140(1) b |
cis-Br-Pb-Br (°) | 80.8(1)–96.5(1) | 84.0(3)–95.9(4) | 86.01(4)–95.19(2) |
trans-Br-Pb-Br (°) | 167.44(8) | 169.0(4)–178.4(3) | 171.1–175.9 |
Pb-Br-Pb (°) | 83.1(1)–180 | 169.0(4)–180 | 178.08(7)–180 |
Topology | Dimers of face-sharing octahedra mutually linked in corner-sharing mode | Corrugated 2D layers from (110)-cuts of 3D perovskite | Corrugated 2D layers from (110)-cuts of 3D perovskite |
IMI cation | Heavily disordered | Ordered | Ordered |
MA or FA cation | C/N disorder | “Ordered” (see text) | Disordered |
Optical band gap (eV) | 3.08 | 2.88 | 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Espejo, G.; Konidaris, K.F.; Guagliardi, A.; Masciocchi, N. Using Imidazolium in the Construction of Hybrid 2D and 3D Lead Bromide Pseudoperovskites. Chemistry 2023, 5, 1329-1342. https://doi.org/10.3390/chemistry5020090
García-Espejo G, Konidaris KF, Guagliardi A, Masciocchi N. Using Imidazolium in the Construction of Hybrid 2D and 3D Lead Bromide Pseudoperovskites. Chemistry. 2023; 5(2):1329-1342. https://doi.org/10.3390/chemistry5020090
Chicago/Turabian StyleGarcía-Espejo, Gonzalo, Konstantis F. Konidaris, Antonietta Guagliardi, and Norberto Masciocchi. 2023. "Using Imidazolium in the Construction of Hybrid 2D and 3D Lead Bromide Pseudoperovskites" Chemistry 5, no. 2: 1329-1342. https://doi.org/10.3390/chemistry5020090
APA StyleGarcía-Espejo, G., Konidaris, K. F., Guagliardi, A., & Masciocchi, N. (2023). Using Imidazolium in the Construction of Hybrid 2D and 3D Lead Bromide Pseudoperovskites. Chemistry, 5(2), 1329-1342. https://doi.org/10.3390/chemistry5020090