Are Metallacyclopentadienes Always Non-Aromatic?
Abstract
1. Introduction
2. Computational Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCP | Metallacyclopentadiene |
MB | Metallabenzene |
CSD | Cambridge Structural Database |
ASE | Aromatic stabilization energy |
NICS | Nuclear independent chemical shifts |
ISE | Isomerization stabilization energy |
DI | Delocalization index |
MO | Molecular orbital |
CTOCD-DZ | Continuous transformations of the origin of the current density-diamagnetic zero |
GIAO | Gauge-including atomic orbital |
References
- Thorn, D.L.; Hoffmann, R. Delocalization in Metallocycles. Nouv. J. Chem. 1979, 3, 39–45. [Google Scholar]
- Mague, J.T. Crystal and molecular structure of chlorobis(triphenylstibine)tetrakis(trifluoromethyl)rhodiacyclopentadaiene-dichloromethane solvate, RhCl(Sb(C6H5)3)2C4(CF3)4.CH2Cl2. Inorg. Chem. 1970, 9, 1610–1618. [Google Scholar] [CrossRef]
- Mogue, J.T. Crystal and molecular structure of chloroaquobis(trimethylarsine)tetrakis)trifluoromethyl)rhodiacyclopentadiene. Inorg. Chem. 1973, 12, 2649–2654. [Google Scholar] [CrossRef]
- Atwood, J.L.; Hunter, W.E.; Alt, H.; Rausch, M.D. The molecular structure of 1,1-bis(η5-cyclopentadienyl)-2,3,4,5-tetraphenyltitanole and its hafnium analogue. J. Am. Chem. Soc. 1976, 98, 2454–2459. [Google Scholar] [CrossRef]
- Gastinger, R.G.; Rausch, M.D.; Sullivan, D.A.; Palenik, G.J. The synthesis and molecular structure of 1-(η5-cyclopentadienyl)-1-triphenylphosphine-2,3,4,5-tetrakis(pentafluorophenyl)rhodole. J. Organomet. Chem. 1976, 117, 355–364. [Google Scholar] [CrossRef]
- Gastinger, R.G.; Rausch, M.D.; Sullivan, D.A.; Palenik, G.J. Synthesis and molecular structure of 1-(π-cyclopentadienyl)-1-triphenylphosphine-2,3,4,5-tetrakis(pentafluorophenyl)cobaltole. J. Am. Chem. Soc. 1976, 98, 719–723. [Google Scholar] [CrossRef]
- Suzuki, H.; Itoh, K.; Ishii, Y.; Simon, K.; Ibers, J.A. Preparation structure, and role of tetrakis(methoxycarbonyl)palladiacyclopentadiene cyclic diolefin complexes in selective palladium-catalyzed cyclocotrimerization of acetylenes with olefins. J. Am. Chem. Soc. 1976, 98, 8494–8500. [Google Scholar] [CrossRef]
- Pierpont, C.G.; Downs, H.H.; Itoh, K.; Nishiyama, J.; Ishii, Y. Synthesis and structure of the triphenylphosphonium cyclopentadienylide adduct of oligomeric tetrakis(methoxycarbonyl)palladiacyclopentadiene. J. Organomet. Chem. 1977, 124, 93–101. [Google Scholar] [CrossRef]
- Brown, L.D.; Itoh, K.; Suzuki, H.; Hirai, K.; Ibers, J.A. Effects of donor molecules on the palladium-catalyzed cyclocotrimerization of acetylenes with olefins. Preparation of dimeric tetrakis(methoxycarbonyl)palladiacyclopentadiene(base) complexes and structure with base = 2,6-lutidine. J. Am. Chem. Soc. 1978, 100, 8232–8238. [Google Scholar] [CrossRef]
- Elliott, G.P.; Roper, W.R.; Waters, J.M. Metallacyclohexatrienes or ‘metallabenzenes.’ Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2]. J. Chem. Soc. Chem. Commun. 1982, 811–813. [Google Scholar] [CrossRef]
- Fernández, I.; Frenking, G. Aromaticity in Metallabenzenes. Chem. Eur. J. 2007, 13, 5873–5884. [Google Scholar] [CrossRef]
- Dalebrook, A.F.; Wright, L.J. Chapter Three-Metallabenzenes and Metallabenzenoids. In Advances in Organometallic Chemistry; Hill, A.F., Fink, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 60, pp. 93–177. [Google Scholar] [CrossRef]
- Landorf, C.W.; Haley, M.M. Recent Advances in Metallabenzene Chemistry. Angew. Chem. Int. Ed. 2006, 45, 3914–3936. [Google Scholar] [CrossRef]
- Fernández, I.; Frenking, G.; Merino, G. Aromaticity of metallabenzenes and related compounds. Chem. Soc. Rev. 2015, 44, 6452–6463. [Google Scholar] [CrossRef]
- Fernández, I.; Frenking, G. Theoretical Studies of Metallabenzenes: From Bonding Situation to Reactivity. In Metallabenzenes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 267–304. [Google Scholar] [CrossRef]
- Periyasamy, G.; Burton, N.A.; Hillier, I.H.; Thomas, J.M.H. Electron Delocalization in the Metallabenzenes: A Computational Analysis of Ring Currents. J. Phys. Chem. A 2008, 112, 5960–5972. [Google Scholar] [CrossRef]
- Mauksch, M.; Tsogoeva, S.B. Demonstration of “Möbius” Aromaticity in Planar Metallacycles. Chem. Eur. J. 2010, 16, 7843–7851. [Google Scholar] [CrossRef] [PubMed]
- Havenith, R.W.A.; Proft, F.D.; Jenneskens, L.W.; Fowler, P.W. Relativistic ring currents in metallabenzenes: An analysis in terms of contributions of localised orbitals. Phys. Chem. Chem. Phys. 2012, 14, 9897–9905. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Feixas, F.; Matito, E.; Poater, J.; Solà, M. Metalloaromaticity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 105–122. [Google Scholar] [CrossRef]
- Dávila, K.L.; Contreras, R.R.; Fontal, B.; Torres, F.J.; Rincón, L. An alternative description of aromaticity in metallabenzenes. J. Mex. Chem. Soc. 2017, 61. [Google Scholar] [CrossRef]
- Frogley, B.J.; Wright, L.J. Recent Advances in Metallaaromatic Chemistry. Chem. Eur. J. 2018, 24, 2025–2038. [Google Scholar] [CrossRef]
- Chen, D.; Hua, Y.; Xia, H. Metallaaromatic Chemistry: History and Development. Chem. Rev. 2020, 120, 12994–13086. [Google Scholar] [CrossRef]
- Zhu, J.; Jia, G.; Lin, Z. Understanding Nonplanarity in Metallabenzene Complexes. Organometallics 2007, 26, 1986–1995. [Google Scholar] [CrossRef]
- Chen, Z.N.; Fu, G.; Zhang, I.Y.; Xu, X. Understanding the Nonplanarity in Aromatic Metallabenzenes: A sigma-Control Mechanism. Inorg. Chem. 2018, 57, 9205–9214. [Google Scholar] [CrossRef]
- Proft, F.D.; Geerlings, P. Relative hardness as a measure of aromaticity. Phys. Chem. Chem. Phys. 2004, 6, 242–248. [Google Scholar] [CrossRef]
- Lin, R.; Lee, K.H.; Poon, K.C.; Sung, H.H.Y.; Williams, I.D.; Lin, Z.; Jia, G. Synthesis of Rhenabenzenes from the Reactions of Rhenacyclobutadienes with Ethoxyethyne. Chem. Eur. J. 2014, 20, 14885–14899. [Google Scholar] [CrossRef]
- Iron, M.A.; Lucassen, A.C.B.; Cohen, H.; van der Boom, M.E.; Martin, J.M.L. A Computational Foray into the Formation and Reactivity of Metallabenzenes. J. Am. Chem. Soc. 2004, 126, 11699–11710. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, R.; Pasdar, H. Computational study of substituent effect in para substituted platinabenzene complexes. Russ. J. Phys. Chem. A 2013, 87, 973–978. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, R.; Li, J.; Zhu, J.; Xia, H. Interconversion between Ruthenacyclohexadiene and Ruthenabenzene: A Combined Experimental and Theoretical Study. Organometallics 2014, 33, 5606–5609. [Google Scholar] [CrossRef]
- Ghiasi, R.; Amini, E. Substituent and solvent effects on geometric and electronic structure of C5H5Ir(PH3)3 iridabenzene: A theoretical insight. J. Struct. Chem. 2015, 56, 1483–1494. [Google Scholar] [CrossRef]
- Ghiasi, R.; Boshak, A. Substituent Effect in para Substituted Osmabenzene Complexes. J. Mex. Chem. Soc. 2017, 57. [Google Scholar] [CrossRef]
- Han, F.; Wang, T.; Li, J.; Zhang, H.; Xia, H. m-Metallaphenol: Synthesis and Reactivity Studies. Chem. Eur. J. 2014, 20, 4363–4372. [Google Scholar] [CrossRef]
- Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.X.; Xi, Z. Metallacyclopentadienes: Synthesis, structure and reactivity. Chem. Soc. Rev. 2017, 46, 1160–1192. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Phukan, A.K.; Jiao, H.; Rosenthal, U. Structure and Neutral Homoaromaticity of Metallacyclopentene, -pentadiene, -pentyne, and -pentatriene: A Density Functional Study. Organometallics 2003, 22, 4958–4965. [Google Scholar] [CrossRef]
- Islas, R.; Poater, J.; Solà, M. Analysis of the Aromaticity of Five-Membered Heterometallacycles Containing Os, Ru, Rh, and Ir. Organometallics 2014, 33, 1762–1773. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Yang, S.Y.; Li, X.Y. An investigation of the aromaticity of transition metal heterocyclic complexes by conventional criteria and indices of aromaticity. J. Organomet. Chem. 2004, 689, 1050–1056. [Google Scholar] [CrossRef]
- Jeffreys, J.A.D.; Willis, C.M. Crystal and molecular structure of tricarbonyl-π-[1,1,1-tricarbonyl-2,3-dimethoxy-5-(diphenylmethyl) ferracyclopentadiene]iron(Fe–Fe), a product from the reaction between diphenyldiazomethane and tricarbonyl-π-[1,1,1-tricarbonyl-2,5-dimethoxyferracyclopentadiene]iron(Fe–Fe). J. Chem. Soc. Dalton Trans. 1972, 2169–2173. [Google Scholar] [CrossRef]
- King, M.; Holt, E.M.; Radnia, P.; McKennis, J.S. Metallametallocenes: Ferracobaltocene and ferrarhodocene. New aromatic species. Organometallics 1982, 1, 1718–1720. [Google Scholar] [CrossRef]
- Hong, F.E.; Lue, I.R.; Lo, S.C.; Lin, C.C. Reactions of molybdenum-cobalt complex with phenylacetylene: X-ray crystal structure of [MoCo(CO)4{CPhCHCHCPh}(η5-C5H5)]. J. Organomet. Chem. 1995, 495, 97–101. [Google Scholar] [CrossRef]
- Baxter, R.J.; Knox, G.R.; Pauson, P.L.; Spicer, M.D. Synthesis of Dicarbonyl(η4-tricarbonylcobaltacyclopentadiene)cobalt Complexes from Co2(CO)8. A General Route to Intermediates in Cobalt Carbonyl Mediated Alkyne Trimerization. Organometallics 1999, 18, 197–205. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Kainosho, M.; Ono, A.; Ikariya, T.; Noyori, R. Well-Controlled Polymerization of Phenylacetylenes with Organorhodium(I) Complexes: Mechanism and Structure of the Polyenes. J. Am. Chem. Soc. 1999, 121, 12035–12044. [Google Scholar] [CrossRef]
- Dennett, J.N.L.; Knox, S.A.R.; Anderson, K.M.; Charmant, J.P.H.; Orpen, A.G. The synthesis of [FeRu(CO)2(μ-CO)2(η-C5H5)(η-C5Me5)] and convenient entries to its organometallic chemistry. Dalton Trans. 2005, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Nugent, W.A.; Thorn, D.L.; Harlow, R.L. Cyclization of diacetylenes to E,E exocyclic dienes. Complementary procedures based on titanium and zirconium reagents. J. Am. Chem. Soc. 1987, 109, 2788–2796. [Google Scholar] [CrossRef]
- Hill, J.E.; Fanwick, P.E.; Rothwell, I.P. Formation, fragmentation, and isomerization of titanacycle rings supported by aryloxide ligation. Organometallics 1990, 9, 2211–2213. [Google Scholar] [CrossRef]
- Kaleta, K.; Strehler, F.; Hildebrandt, A.; Beweries, T.; Arndt, P.; Rüffer, T.; Spannenberg, A.; Lang, H.; Rosenthal, U. Synthesis and Characterization of Multiferrocenyl-Substituted Group 4 Metallocene Complexes. Chem. Eur. J. 2012, 18, 12672–12680. [Google Scholar] [CrossRef] [PubMed]
- Àrias, O.; Petrov, A.R.; Bannenberg, T.; Altenburger, K.; Arndt, P.; Jones, P.G.; Rosenthal, U.; Tamm, M. Titanocene and Zirconocene Complexes with Diaminoacetylenes: Formation of Unusual Metallacycles and Fulvene Complexes. Organometallics 2014, 33, 1774–1786. [Google Scholar] [CrossRef]
- Kiel, G.R.; Ziegler, M.S.; Tilley, T.D. Zirconacyclopentadiene-Annulated Polycyclic Aromatic Hydrocarbons. Angew. Chem. Int. Ed. 2017, 56, 4839–4844. [Google Scholar] [CrossRef] [PubMed]
- Urrego-Riveros, S.; Medina, I.M.R.Y.; Duvinage, D.; Lork, E.; Sönnichsen, F.D.; Staubitz, A. Negishi’s Reagent Versus Rosenthal’s Reagent in the Formation of Zirconacyclopentadienes. Chem. Eur. J. 2019, 25, 13318–13328. [Google Scholar] [CrossRef]
- Zeng, Y.; Feng, H.; King, R.B.; Schaefer, H.F. Metallocene versus Metallabenzene Isomers of Nickel, Palladium, and Platinum. Organometallics 2014, 33, 7193–7198. [Google Scholar] [CrossRef]
- Ebrahimi, A.A.; Ghiasi, R.; Foroutan-Nejad, C. Topological characteristics of the Ring Critical Points and the aromaticity of groups IIIA to VIA hetero-benzenes. J. Mol. Struct. THEOCHEM 2010, 941, 47–52. [Google Scholar] [CrossRef]
- Foroutan-Nejad, C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Accounts 2015, 134, 8. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. Accounts Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Noro, T.; Sekiya, M.; Koga, T. Segmented contracted basis sets for atoms H through Xe: Sapporo-(DK)-nZP sets (n = D, T, Q). Theor. Chem. Accounts 2012, 131, 1124. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Keith, T.A. AIMAll, TK Gristmill Software. Overland, Park KS, USA, 2019. [Google Scholar]
- Barquera-Lozada, J.E. The vorticity of the current density tensor and 3D-aromaticity. Int. J. Quantum Chem. 2019, 119, e25848. [Google Scholar] [CrossRef]
- Barquera-Lozada, J.E. Vorticity: Simplifying the analysis of the current density. J. Comput. Chem. 2019, 40, 2602–2610. [Google Scholar] [CrossRef] [PubMed]
- Rico-Sotomayor, E.M.; Barquera-Lozada, J.E. Triangulenes and their ions: Reaching the limits of Clar’s rule. Phys. Chem. Chem. Phys. 2020, 22, 24704–24711. [Google Scholar] [CrossRef]
- Keith, T.A.; Bader, R.F.W. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 1993, 210, 223–231. [Google Scholar] [CrossRef]
- Lazzeretti, P.; Malagoli, M.; Zanasi, R. Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density. Chem. Phys. Lett. 1994, 220, 299–304. [Google Scholar] [CrossRef]
- Steiner, E.; Fowler, P.W. Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions. J. Phys. Chem. A 2001, 105, 9553–9562. [Google Scholar] [CrossRef]
- Monaco, G.; Summa, F.F.; Zanasi, R. Program Package for the Calculation of Origin-Independent Electron Current Density and Derived Magnetic Properties in Molecular Systems. J. Chem. Inf. Model. 2021, 61, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Hunter, W.E.; Atwood, J.L.; Fachinetti, G.; Floriani, C. The crystal structure of 1,1-bis(η5-cyclopentadienyl)-2,3,4,5-tetraphenylzirconole. J. Organomet. Chem. 1981, 204, 67–74. [Google Scholar] [CrossRef]
- Sala-Pala, J.; Amaudrut, J.; Guerchais, J.E.; Mercier, R.; Douglade, J.; Theobald, J.G. Chimie organométallique du niobium VIII. Etude détaillée de la réaction d’acétyléniques perfluorés avec (η5C5H5)2NbH3: Mise en evídence de la coupure de liaison C-F, de la formation de liaison Nb-F et de la reduction du niobium. Structure cristalline d’un dérivé niobiacyclopentadiène. J. Organomet. Chem. 1981, 204, 347–359. [Google Scholar] [CrossRef]
- Albers, M.O.; Waal, D.J.A.D.; Liles, D.C.; Robinson, D.J.; Singleton, E.; Wiege, M.B. The novel cyclodimerization of phenylacetylene at a ruthenium(II) centre. The synthesis and X-ray structural characterization of the first metallacyclopentatriene, [(η-C5H5)Ru(C4Ph2H2)Br], and its facile conversion into metallacyclopentadienes. J. Chem. Soc. Chem. Commun. 1986, 1680–1682. [Google Scholar] [CrossRef]
- Sánchez, G.; Vives, J.; Serrano, J.L.; Pérez, J.; López, G. New palladacyclopentadiene complexes containing an N,P-donor setting. Crystal structure of [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNiPr)]. Inorganica Chim. Acta 2002, 328, 74–80. [Google Scholar] [CrossRef]
- Canovese, L.; Visentin, F.; Levi, C.; Santo, C.; Bertolasi, V. Facile synthesis and reactivity study of mixed phosphane–isocyanide Pd(II) and Pd(0) complexes. Inorganica Chim. Acta 2011, 378, 239–249. [Google Scholar] [CrossRef]
- Yi, C.S.; Torres-Lubian, J.R.; Liu, N.; Rheingold, A.L.; Guzei, I.A. Selective Linear Coupling Reaction of Acetylene and Acrylonitrile Catalyzed by the Well-Defined Metallacyclopentadiene Complex C5Me5(PPh3)(Cl)RuCHCHCHCH. Organometallics 1998, 17, 1257–1259. [Google Scholar] [CrossRef]
- Bruce, M.I.; Hall, B.C.; Skelton, B.W.; Tiekink, E.R.T.; White, A.H.; Zaitseva, N.N. Some Pentamethylcyclopentadienyl-Ruthenium Derivatives of Methyl Propiolate. Aust. J. Chem. 2000, 53, 99–107. [Google Scholar] [CrossRef]
- Yamazaki, H.; Wakatsuki, Y. Cobalt metallocycles: XIII. Preparation and x-ray crystallography of cobaltacyclopentadiene and dinuclear cobalt complexes. J. Organomet. Chem. 1984, 272, 251–263. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Yeamine, M.R.; Amin, J.; Motevalli, M.; Richards, C.J. Synthesis and 1H NMR spectroscopic properties of substituted (η4-tetraarylcyclobutadiene)(η5-cyclopentadienyl)cobalt metallocenes. J. Organomet. Chem. 2008, 693, 3668–3676. [Google Scholar] [CrossRef]
- Ernst, C.; Walter, O.; Dinjus, E.; Arzberger, S.; Görls, H. Structural characterization of Cp*Ru-intermediates of phenylacetylene cyclotrimerization. J. FüR Prakt. Chem. 1999, 341, 801–804. [Google Scholar] [CrossRef]
- Ernst, C.; Walter, O.; Dinjus, E. Cp*Ru-allylcarbene complexes by nucleophilic attack of cyclic Cp*Ru-dicarbenes. J. Organomet. Chem. 2001, 627, 249–254. [Google Scholar] [CrossRef]
- Yamada, Y.; Mizutani, J.; Kurihara, M.; Nishihara, H. Synthesis of a new bis(ferrocenyl)ruthenacyclopentatriene compound with a significant inter-metal electronic communication. J. Organomet. Chem. 2001, 637–639, 80–83. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. Ruthenium(II)-Catalyzed Selective Intramolecular [2 + 2 + 2] Alkyne Cyclotrimerizations. J. Am. Chem. Soc. 2003, 125, 12143–12160. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Curchod, B.F.E.; Campomanes, P.; Solari, E.; Scopelliti, R.; Rothlisberger, U.; Severin, K. Reactions of Alkynes with [RuCl(cyclopentadienyl)] Complexes: The Important First Steps. Chem. Eur. J. 2010, 16, 8400–8409. [Google Scholar] [CrossRef]
- Schleyer, P.V.R.; Pühlhofer, F. Recommendations for the Evaluation of Aromatic Stabilization Energies. Org. Lett. 2002, 4, 2873–2876. [Google Scholar] [CrossRef]
- O’Connor, J.M.; Merwin, R.; Rheingold, A.L.; Adams, M.L. Synthesis and Structural Characterization of a Diiridium .mu.-Acyl Complex. Organometallics 1995, 14, 2102–2105. [Google Scholar] [CrossRef]
- O’Connor, J.M.; Hiibner, K.; Rheingold, A.L.; Liable-Sands, L.M. New transition metal binding modes for creatinine: Molecular structures of [(C4R4)Ir(C4H7N3O)(PPh3)2Cl] and [(C4R4)Ir(C4H7N3O)(PPh3)2]BF4, (R = CO2CH3). Polyhedron 1997, 16, 2029–2035. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Han, F.; Long, L.; Lin, Z.; Xia, H. cine-Substitution Reactions of Metallabenzenes: An Experimental and Computational Study. Chem. Eur. J. 2013, 19, 10982–10991. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Stephens, M.E. Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 1975, 97, 7391–7399. [Google Scholar] [CrossRef]
- Poater, J.; Solà, M.; Duran, M.; Fradera, X. The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory. Theor. Chem. Accounts 2002, 107, 362–371. [Google Scholar] [CrossRef]
- Firme, C.L.; Antunes, O.A.C.; Esteves, P.M. Relation between bond order and delocalization index of QTAIM. Chem. Phys. Lett. 2009, 468, 129–133. [Google Scholar] [CrossRef]
- Outeiral, C.; Vincent, M.A.; Pendás, A.M.; Popelier, P.L.A. Revitalizing the concept of bond order through delocalization measures in real space. Chem. Sci. 2018, 9, 5517–5529. [Google Scholar] [CrossRef] [PubMed]
- Poater, J.; Fradera, X.; Duran, M.; Solà, M. The Delocalization Index as an Electronic Aromaticity Criterion: Application to a Series of Planar Polycyclic Aromatic Hydrocarbons. Chem. Eur. J. 2003, 9, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Jusélius, J.; Sundholm, D.; Gauss, J. Calculation of current densities using gauge-including atomic orbitals. J. Chem. Phys. 2004, 121, 3952–3963. [Google Scholar] [CrossRef] [PubMed]
- Gershoni-Poranne, R.; Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 2015, 44, 6597–6615. [Google Scholar] [CrossRef] [PubMed]
- Sundholm, D.; Fliegl, H.; Berger, R.J.F. Calculations of magnetically induced current densities: Theory and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 639–678. [Google Scholar] [CrossRef]
- Fliegl, H.; Sundholm, D.; Taubert, S.; Jusélius, J.; Klopper, W. Magnetically Induced Current Densities in Aromatic, Antiaromatic, Homoaromatic, and Nonaromatic Hydrocarbons. J. Phys. Chem. A 2009, 113, 8668–8676. [Google Scholar] [CrossRef] [PubMed]
- Bast, R.; Jusélius, J.; Saue, T. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds. Chem. Phys. 2009, 356, 187–194. [Google Scholar] [CrossRef]
- Monaco, G.; Zanasi, R.; Pelloni, S.; Lazzeretti, P. Relative Weights of σ and π Ring Currents in a Few Simple Monocycles. J. Chem. Theory Comput. 2010, 6, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Cyrański, M.; Havenith, R.; Dobrowolski, M.; Gray, B.; Krygowski, T.; Fowler, P.; Jenneskens, L. The Phenalenyl Motif: A Magnetic Chameleon. Chem. Eur. J. 2007, 13, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Havenith, R.W.A.; Fowler, P.W. The origin of the ring current in the all-metal aromatic, Al42-. Phys. Chem. Chem. Phys. 2006, 8, 3383–3386. [Google Scholar] [CrossRef] [PubMed]
- Steiner, E.; Fowler, P.W. On the orbital analysis of magnetic properties. Phys. Chem. Chem. Phys. 2004, 6, 261–272. [Google Scholar] [CrossRef]
Molecule | (Å) | (Å) | (Å) | (°) |
---|---|---|---|---|
1 | 2.12 | 1.34 | 1.47 | 0.1 |
2 | 2.24 | 1.35 | 1.48 | 0.1 |
3 | 2.25 | 1.33 | 1.47 | 1.0 |
4 | 2.13 | 1.33 | 1.47 | 0.2 |
5 | 1.92 | 1.34 | 1.45 | 3.4 |
6 | 1.94 | 1.36 | 1.42 | 5.0 |
7 | 2.00 | 1.34 | 1.49 | 5.7 |
8 | 1.84 | 1.48 | 1.34 | 0.0 |
9 | 1.97 | 1.34 | 1.47 | 0.0 |
10 | 2.05 | 1.34 | 1.46 | 0.0 |
11 | 2.06 | 1.33 | 1.46 | 2.2 |
12 | 2.16 | 1.34 | 1.46 | 0.0 |
13 | 2.14 | 1.34 | 1.45 | 1.4 |
14 | 2.16 | 1.35 | 1.44 | 2.3 |
15 | 2.01 | 1.35 | 1.46 | 3.3 |
16 | 2.03 | 1.35 | 1.45 | 2.5 |
17 | 1.92 | 1.34 | 1.47 | 0.0 |
18 | 1.98 | 1.33 | 1.46 | 0.0 |
Molecule | ISE (kcal/mol) | (a.u.) | (a.u.) | (a.u.) | (a.u.) | (nA/T) |
---|---|---|---|---|---|---|
1 | 0.94 | 0.643 | 1.739 | 1.091 | 0.647 | −0.14 |
2 | −0.24 | 0.615 | 1.769 | 1.082 | 0.687 | 0.28 |
3 | −3.70 | 0.654 | 1.758 | 1.060 | 0.698 | −20.58 |
4 | −5.15 | 0.513 | 1.753 | 1.062 | 0.691 | −7.86 |
5 | −1.20 | 0.894 | 1.683 | 1.118 | 0.564 | 13.93 |
6 | 0.57 | 1.147 | 1.539 | 1.214 | 0.324 | −13.58 |
7 | −7.82 | 0.793 | 1.801 | 1.047 | 0.753 | 0.70 |
8 | −26.60 | 1.690 | 1.075 | 1.670 | −0.594 | −55.99 |
9 | −5.71 | 0.774 | 1.784 | 1.066 | 0.718 | −2.91 |
10 | −5.94 | 0.865 | 1.764 | 1.076 | 0.688 | −5.43 |
11 | 4.94 | 0.739 | 1.690 | 1.106 | 0.585 | 7.43 |
12 | 3.40 | 0.775 | 1.702 | 1.104 | 0.598 | 3.86 |
13 | 2.04 | 0.610 | 1.684 | 1.120 | 0.564 | 3.94 |
14 | 4.77 | 0.732 | 1.631 | 1.153 | 0.478 | 5.41 |
15 | 0.91 | 0.768 | 1.700 | 1.106 | 0.594 | 7.02 |
16 | 3.38 | 0.945 | 1.665 | 1.117 | 0.548 | 5.12 |
17 | −5.71 | 0.884 | 1.783 | 1.069 | 0.715 | −2.50 |
18 | −4.99 | 0.993 | 1.748 | 1.082 | 0.666 | −4.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casiano-González, R.; Barquera-Lozada, J.E. Are Metallacyclopentadienes Always Non-Aromatic? Chemistry 2021, 3, 1302-1313. https://doi.org/10.3390/chemistry3040094
Casiano-González R, Barquera-Lozada JE. Are Metallacyclopentadienes Always Non-Aromatic? Chemistry. 2021; 3(4):1302-1313. https://doi.org/10.3390/chemistry3040094
Chicago/Turabian StyleCasiano-González, Ricardo, and José Enrique Barquera-Lozada. 2021. "Are Metallacyclopentadienes Always Non-Aromatic?" Chemistry 3, no. 4: 1302-1313. https://doi.org/10.3390/chemistry3040094
APA StyleCasiano-González, R., & Barquera-Lozada, J. E. (2021). Are Metallacyclopentadienes Always Non-Aromatic? Chemistry, 3(4), 1302-1313. https://doi.org/10.3390/chemistry3040094