CNN-Based Smart Sleep Posture Recognition System
Abstract
:1. Introduction
2. Methods and Material
2.1. System Architecture
2.2. Sensor Design
2.3. Mat Design
2.4. Data Acquisition
Algorithm 1:Sensor Scanning | |||||
1: | procedure | ||||
2: | clear shift register | ||||
3: | shift 1 into shift register | ||||
4: | for row i = 0 to I-1 | ||||
5: | for column j = 0 to J-1 | ||||
6: | array[i][j] = ADCj value | ||||
7: | end for; | ||||
8: | shift 0 into shift register | ||||
9: | end for; | ||||
10: | end procedure; |
2.5. Power Consumption Analysis
2.6. Posture Recognition
2.7. Mobile Application
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ageing and Health in Global Strategy and Action Plan on Ageing and Health; World Health Organization: Geneva, Switzerland, 2017.
- Alotaibi, A.D.; Alosaimi, F.M.; Alajlan, A.A.; Abdulrahman, K.A. The relationship between sleep quality, stress, and academic performance among medical students. J. Fam. Community Med. 2020, 27, 23. [Google Scholar]
- Harvey, R.; Colten, B.; Altevogt, M. Institute of Medicine (US) Committee on Sleep Medicine and Research. In Sleep Disorders and Sleep Deprivation; National Academies Press (US): Washington, DC, USA, 2006. [Google Scholar]
- Verhaert, V.; Haex, B.; de Wilde, T.; Berckmans, D.; Vandekerckhove, M.; Verbraecken, J.; Sloten, J.V. Unobtrusive assessment of motor patterns during sleep based on mattress indentation measurements. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.G.; Zizi, F.; Brown, D.; Ogedegbe, G.; Borer, J.; McFarlane, S. Obstructive sleep apnea and cardiovascular disease: Evidence and underlying mechanisms. Minerva Pneumol. 2009, 48, 277–293. [Google Scholar]
- Mansfield, S.; Obraczka, K.; Roy, S. Pressure Injury Prevention: A Survey. IEEE Rev. Biomed. Eng. 2019, 5, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Catto, R. The Case for Investment in: A Quality Improvement Programme to Reduce Pressure Injuries in New Zealand; New Zealand Report; KPMG Advisory: Amstelveen, The Netherlands, 2015. [Google Scholar]
- Ye, S.; Eum, S. Implement the system of the Position Change for Obstructive sleep apnea patient. J. Korea Inst. Info. Comm. Eng. 2017, 21, 1231–1236. [Google Scholar]
- Tangtrakulwanich, B.; Kapkird, A. Analyses of possible risk factors for subacromial impingement syndrome. World J. Orthop. 2012, 3, 5–9. [Google Scholar] [CrossRef]
- Cheyne, J.A. Situational factors affecting sleep paralysis and associated hallucinations: Position and timing effects. J. Sleep Res. 2002, 11, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.A.; Orr, W.C.; Crawley, J.A.; Traxler, B.; McCullough, J.; Brown, K.A.; Roth, T. Effect of esomeprazole on nighttime heartburn and sleep quality in patients with GERD: A randomized, placebo-controlled trial. Am. J. Gastroenterol. 2005, 100, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.physio-pedia.com/File:Pressure-Sore-Points.jpg (accessed on 19 February 2021).
- Muppavram, S.; Patel, N.; Nadeem, M. Posture Alert. In Proceedings of the 2018 IEEE Region Ten Symposium (Tensymp), Sydney, Australia, 4–6 July 2018; pp. 213–218. [Google Scholar]
- Sadek, I.; Demarasse, A.; Mokhtari, M. Internet of things for sleep tracking: Wearables vs. nonwearables. Health Technol. 2020, 10, 333–340. [Google Scholar] [CrossRef]
- Stoeva, M. Health and technology revealing the vision on technological applications in contemporary healthcare. Health Technol. 2020, 10, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Zamir, Z.R.; Sukhorukova, N.; Amiel, H.; Ugon, A.; Philippe, C. Optimization based features extraction for K-complex detection. Anziam J. 2013, 55, 384–398. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Lin, Y.; Wang, J.; Ma, Y. Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG. In Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November 2018; pp. 88–95. [Google Scholar]
- Jha, D.; Kim, J.I.; Kwon, G.R. Diagnosis of Alzheimer’s disease using dual-tree complex wavelet transform, PCA, and feed-forward neural network. J. Healthc. Eng. 2017. [Google Scholar] [CrossRef]
- Wang, D.; Ren, D.; Li, K.; Feng, Y.; Ma, D.; Yan, X.; Wang, G. Epileptic seizure detection in long-term EEG recordings by using wavelet-based directed transfer function. IEEE Trans. Biomed. Eng. 2018, 65, 2591–2599. [Google Scholar] [CrossRef] [PubMed]
- Lajnef, T.; Chaibi, S.; Ruby, P.; Aguera, P.E.; Eichenlaub, J.B.; Samet, M.; Kachouri, A.; Jerbi, K. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods 2015, 250, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Ouyang, W.; Li, H.; Wang, X. Saliency detection by multi-context deep learning. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015; IEEE: New York, NY, USA, 2015; pp. 1265–1274. [Google Scholar]
- Huan, E.Y.; Wen, G.H.; Zhang, S.J.; Li, D.Y.; Hu, Y.; Chang, T.Y.; Huang, B.L. Deep convolutional neural networks for classifying body constitution based on face image. Comput. Math. Methods Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Schöbel, C.; Fietze, I. New technology to assess sleep apnea: Wearables, smartphones, and accessories. F1000Research 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo Clinic. Polysomnography (Sleep Study). Available online: https://www.mayoclinic.org/tests-procedures/polysomnography/about/pac-20394877 (accessed on 8 October 2018).
- Itamar-Medical. WatchPAT. Available online: https://www.itamar-medical.com/watchpat-home-sleep-testing-made-simple (accessed on 8 October 2018).
- Min, J.; Doryab, A.; Wiese, J.; Amini, S.; Zimmerman, J.; Hong, J.I. Toss “N” Turn: Smartphone as Sleep and Sleep Quality Detector. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems-CHI, Toronto, ON, Canada, 26 April–1 May 2014; Volume 14, pp. 477–486. [Google Scholar]
- Pombo, N.; Garcia, N.M. UbiSleep: An ubiquitous sensor system for sleep monitoring. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 5–9 September 2016. [Google Scholar]
- Google Play Store. Sleep as Android: Sleep Cycle Tracker, Smart Alarm. Available online: https://play.google.com/store/apps/details?id=com.urbandroid.sleep (accessed on 28 April 2018).
- Google Play Store. Runtastic Sleep Better: Sleep Cycle & Smart Alarm. Available online: https://play.google.com/store/apps/details?id=com.runtastic.android.sleepbetter.lite (accessed on 28 April 2018).
- Chang, X.; Peng, C.; Xing, G.; Hao, T.; Zhou, G. iSleep: A Smartphone System for Unobtrusive Sleep Quality Monitoring. ACM Trans. Sens. Netw. 2020, 16, 1–32. [Google Scholar] [CrossRef]
- Fitbit Inc. Fitbit Charge 2. Available online: https://www.fitbit.com/nz/charge2 (accessed on 28 April 2018).
- Jawbone. Up3. Available online: https://jawbone.com/up/trackers/up3 (accessed on 28 April 2018).
- Jeon, L.; Finkelstein, J. Consumer sleep tracking devices: A critical review. Proc. Stud. Health Technol. Inform. 2015, 210, 458–460. [Google Scholar]
- Yu, M.; Rhuma, A.; Naqvi, S.M.; Wang, L.; Chambers, J. A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1274–1286. [Google Scholar]
- Masek, M.; Lam, C.P.; Fryer, C.T.; Jansen, B.; Baptist, K. Sleep monitor: A tool for monitoring and categorical scoring of lying position using 3D camera data. SoftwareX 2018, 7, 341–346. [Google Scholar] [CrossRef]
- Bhatia, S.; Sigal, L.; Isard, M.; Black, M.J. 3D human limb detection using space carving and multi-view eigen models. In Proceedings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’04), Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Grimm, T.; Martinez, M.; Benz, A.; Stiefelhagen, R. Sleep position classification from a depth camera using bed aligned maps. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Canun, Mexico, 4–8 December 2016; pp. 319–324. [Google Scholar]
- Lee, J.; Hong, M.; Ryu, S. Sleep monitoring system using kinect sensor. Int. J. Distrib. Sens. Netw. 2015, 11, 5371. [Google Scholar] [CrossRef]
- Torres, C.; Fragoso, V.; Hammond, S.; Fried, J.; Manjunath, B. Eye-CU: Sleep Pose Classification for Healthcare using Multimodal Multiview Data. In Proceedings of the Winter Conference on Applications of Computer Vision (WACV), New York, NY, USA, 7–9 March 2016. [Google Scholar]
- Martinez, M.; Schauerte, B.; Stiefelhagen, R. International Conference on Computer Analysis of Images and Patterns; Springer: New York, NY, USA, 2013; pp. 465–472. [Google Scholar]
- Martinez, M.; Rybok, L.; Stiefelhagen, R. Action recognition in bed using bams for assisted living and elderly care. In Proceedings of the 2015 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May 2015; pp. 329–332. [Google Scholar]
- Hoque, E.; Dickerson, R.F.; Stankovic, J.A. Monitoring body positions and movements during sleep using WISPs. Wirel. Health 2010, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Nam, W.; Choi, J.; Kim, T.; Yoon, D.; Lee, S.; Paek, J.; Ko, J. Glasses for the third eye: Improving the quality of clinical data analysis with motion sensor-based data filtering. In Proceedings of the 15th Conference on Embedded Network Sensor Systems, New York, NY, USA, 5–8 November 2017; p. 8. [Google Scholar]
- Liu, X.; Cao, J.; Tang, S.; Wen, J. Wi-sleep: Contactless sleep monitoring via WiFi signals. In Proceedings of the 2014 IEEE Real-Time Systems Symposium, Rome, Italy, 2–5 December 2014; pp. 346–355. [Google Scholar]
- Liu, J.; Chen, X.; Chen, S.; Liu, X.; Wang, Y.; Chen, L. TagSheet: Sleeping Posture Recognition with an Unobtrusive Passive Tag Matrix. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 874–882. [Google Scholar]
- Zhang, F.; Wu, C.; Wang, B.; Wu, M.; Bugos, D.; Zhang, H.; Liu, K.R. Smars: Sleep monitoring via ambient radio signals. IEEE Trans. Mob. Comput. 2019. [Google Scholar] [CrossRef]
- Lin, F.; Zhuang, Y.; Song, C.; Wang, A.; Li, Y.; Gu, C.; Xu, W. SleepSense: A noncontact and cost-effective sleep monitoring system. IEEE Trans. Biomed. Circuits Syst. 2016, 11, 189–202. [Google Scholar] [CrossRef]
- Toms, M. Patient Movement Detection. U.S. Patent 6,036,660, 14 March 2000. [Google Scholar]
- Alaziz, M.; Jia, Z.; Liu, J.; Howard, R.; Chen, Y.; Zhang, Y. Motion scale: A body motion monitoring system using bed-mounted wireless load cells. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 183–192. [Google Scholar] [CrossRef]
- Liu, J.J.; Xu, W.; Huang, M.C.; Alshurafa, N.; Sarrafzadeh, M.; Raut, N.; Yadegar, B. A dense pressure sensitive bedsheet design for unobtrusive sleep posture monitoring. In Proceedings of the IEEE International Conference Pervasive Computing and Communications, San Diego, CA, USA, 18–22 March 2013; pp. 207–215. [Google Scholar]
- Lokavee, S.; Watthanawisuth, N.; Mensing, J.P.; Kerdcharoen, T. Sensor pillow system: Monitoring cardio-respiratory and posture movements during sleep. In Proceedings of the 4th Biomedical Engineering International Conference, Chiang Mai, Thailand, 29–31 January 2011; pp. 71–75. [Google Scholar]
- Pino, E.J.; de la Paz, D.A.; Aqueveque, P.; Chavez, J.A.; Moran, A.A. Contact pressure monitoring device for sleep studies. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4160–4163. [Google Scholar]
- Lin, L.; Xie, Y.; Wang, S.; Wu, W.; Niu, S.; Wen, X.; Wang, Z.L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; Ren, Z.; Goubran, R.; Rockwood, K.; Knoefel, F. In-Bed Mobility Monitoring Using Pressure Sensors. IEEE Trans. Instrum. Meas. 2015, 64, 2110–2120. [Google Scholar] [CrossRef]
- Pouyan, M.B.; Birjandtalab, J.; Heydarzadeh, M.; Nourani, M.; Ostadabbas, S. A pressure map dataset for posture and subject analytics. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017. [Google Scholar]
- Ostadabbas, S.; Pouyan, M.B.; Nourani, M.; Kehtarnavaz, N. In-bed posture classification and limb identification. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014. [Google Scholar]
- Zhao, A.; Dong, J.; Zhou, H. Self-Supervised Learning from Multi-Sensor Data for Sleep Recognition. IEEE Access 2020, 8, 93907–93921. [Google Scholar] [CrossRef]
- Clemente, J.; Valero, M.; Li, F.; Wang, C.; Song, W. Helena: Real-time Contact-free Monitoring of Sleep Activities and Events around the Bed. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom), Austin, TX, USA, 23–27 March 2020; pp. 1–10. [Google Scholar]
- Byeon, Y.H.; Lee, J.Y.; Kim, D.H.; Kwak, K.C. Posture Recognition Using Ensemble Deep Models under Various Home Environments. Appl. Sci. 2020, 10, 1287. [Google Scholar] [CrossRef] [Green Version]
- Viriyavit, W.; Sornlertlamvanich, V. Bed Position Classification by a Neural Network and Bayesian Network Using Noninvasive Sensors for Fall Prevention. J. Sens. 2020, 2020. [Google Scholar] [CrossRef]
- Rodríguez, A.P.; Gil, D.; Nugent, C.; Quero, J.M. In-Bed Posture Classification from Pressure Mat Sensors for the Prevention of Pressure Ulcers Using Convolutional Neural Networks. In Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering, London, UK, 6 May 2020; pp. 338–349. [Google Scholar]
- Wang, Z.W.; Wang, S.K.; Wan, B.T.; Song, W.W. A novel multi-label classification algorithm based on K-nearest neighbor and random walk. Int. J. Distrib. Sens. Netw. 2020, 16, 1892. [Google Scholar] [CrossRef]
- Matar, G.; Lina, J.M.; Carrier, J.; Riley, A.; Kaddoum, G. Internet of Things in sleep monitoring: An application for posture recognition using supervised learning. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [Google Scholar]
- Matar, G.; Lina, J.M.; Kaddoum, G. Artificial neural network for in-bed posture classification using bed-sheet pressure sensors. IEEE J. Biomed. Health Inform. 2019, 24, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Tang, X.; Tang, W. A Real-time Patient-Specific Sleeping Posture Recognition System using Pressure Sensitive Conductive Sheet and Transfer Learning. IEEE Sens. J. 2020, 21, 6869–6879. [Google Scholar] [CrossRef]
- Liu, Z.; Mingliang, S.U.; Lu, K. A Method to Recognize Sleeping Position Using an CNN Model Based on Human Body Pressure Image. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 12–14 July 2019; pp. 219–224. [Google Scholar]
- Huang, Y.F.; Hsu, Y.H.; Chang, C.C.; Liu, S.H.; Wei, C.C.; Yao, T.Y.; Lin, C.B. An improved sleep posture recognition based on force sensing resistors. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Kanazawa, Japan, 3–5 April 2017; pp. 318–327. [Google Scholar]
- Ida, N. Sensors, Actuators, and their Interfaces: A Multidisciplinary Introduction; Edison, N.J., Ed.; SciTech Publishing: Raleigh, NC, USA, 2014. [Google Scholar]
- Valueva, M.V.; Nagornov, N.N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. In Mathematics and Computers in Simulation; Elsevier BV: Amsterdam, The Netherlands, 2020; Volume 177, pp. 232–243. [Google Scholar]
- Fukushima, K. Artificial vision by multi-layered neural networks: Neocognitron and its advances. Neural Netw. 2013, 37, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Shen, S.; Sadoughi, M.; Li, M.; Wang, Z.; Hu, C. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl. Energy 2020, 260, 4296. [Google Scholar] [CrossRef]
- Bertogna, E.G.; Machado, F.M.; Sovierzoski, M.A. An optimized ECG android system using data compression scheme for cloud storage. Health Technol. 2020. [Google Scholar] [CrossRef]
- Weerd, V.C.; Yalcin, A.; Buie, A.G.; Wang, Y.; Roberts, M.; Mahser, N.; Fnu, C.; Fabiano, D. HomeSense: Design of an ambient home health and wellness monitoring platform for older adults. Health Technol. 2020. [Google Scholar] [CrossRef]
- Alamoodi, A.H.; Garfan, S.; Zaidan, B.B.; Zaidan, A.A.; Shuwandy, M.L.; Alaa, M.; Alsalem, M.A.; Mohammed, A.; Aleesa, A.M.; Albahri, O.S.; et al. A systematic review into the assessment of medical apps: Motivations, challenges, recommendations and methodological aspect. Health Technol. 2020. [Google Scholar] [CrossRef]
- Xu, X.; Feng, L.; Wang, A.; Hu, Y.; Huang, M.C.; Xu, W. Body-Earth Mover’s Distance: A Matching-Based Approach for Sleep Posture Recognition. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, F.; Wang, A.; Hu, Y.; Huang, M.C.; Xu, W. On-bed sleep posture recognition based on body- earth mover’s distance. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar]
Type | Name | Dimensions | Sensors | Max Pressure (kgf/cm2) |
---|---|---|---|---|
Pressure Sensing Mat | Tekscan BPMS HMER3 | 173cm × 88cm | 5304 | 6.6 |
SPI Tactilus Bodyfitter | 185cm × 76cm | 1728 | 14.1 | |
Limiting Switch | Tapeswitch Sensing Cell | 2.5cm × 1.9cm | Each | NA |
FSR | Leanstar Tech DF9-40 | 0.9 cm diameter | Each | 77.1 |
Tekscan A301 | 1 cm diameter | Each | 35.3 | |
Piezoresistive | Velostat | Any | Any | 3.7 |
Component | Model | Current |
---|---|---|
Sensor Array | Mat-e | 35 mA |
Microcontroller | ATmega32u4 | 13 mA |
Wi-Fi Module | ESP8266 | 80 mA |
Category | Training | Test | Total |
---|---|---|---|
Unoccupied (U) | 180 | 20 | 200 |
Face Up (FU) | 180 | 20 | 200 |
Face Down (FD) | 180 | 20 | 200 |
Left Lateral (LL) | 180 | 20 | 200 |
Right Lateral (RL) | 180 | 20 | 200 |
Edge (E) | 180 | 20 | 200 |
Category | Accuracy (%) |
---|---|
Unoccupied (U) | 100.0 |
Face Up (FU) | 93.0 |
Face Down (FD) | 90.0 |
Left Lateral (LL) | 85.0 |
Right Lateral (RL) | 80.0 |
Edge (E) | 95.0 |
U | FU | FD | LL | RL | E | |
---|---|---|---|---|---|---|
U | 100 | 0 | 0 | 0 | 0 | 0 |
FU | 0 | 93 | 7 | 0 | 0 | 0 |
FD | 0 | 7 | 90 | 2 | 1 | 0 |
LL | 0 | 0 | 2 | 85 | 10 | 3 |
RL | 0 | 2 | 2 | 12 | 80 | 4 |
E | 3 | 0 | 0 | 1 | 1 | 95 |
Methods | Sensor Type | Resolution | Algorithm | Postures | Accuracy |
---|---|---|---|---|---|
Proposed method | Piezo-resistive pressure sensors sheet | 19 × 9 = 171 | CNN with Transfer Learning | 4 | 90% |
[65] | Pressure sensor sheet | 32 × 32 = 1064 | HOG + SVM CNN CNN with Transfer Learning | 6 | 87% 85% 91% |
[66] | Piezo-resistive pressure sensors | 64 × 32 = 2048 | CNN | 6 | 97.6% |
[64] | Piezo-resistive pressure sensors | 64 × 27 = 1728 | Artificial Neural Network | 4 | 91% |
[55] | Force Sensitive Resistor | 2048 | Deep Neural Network | 3 | 97.1 |
[67] | Force Sensitive Resistor | 360 | Mean Squared Error Scaled Moving Average | 3 | 87% 96% |
[76] | Piezo-electrical Pressure Sensor | 64 × 128 = 2048 | K-nearest Neighborhood | 6 | 91.2 |
[77] | Piezo-electrical Pressure Sensor | 64 × 128 = 2048 | K-nearest | 6 | 90.6% |
[56] | Pressure Sensor Mat | 64 × 27 = 1728 | K-nearest Neighborhood | 3 | 91.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119-139. https://doi.org/10.3390/iot2010007
Tang K, Kumar A, Nadeem M, Maaz I. CNN-Based Smart Sleep Posture Recognition System. IoT. 2021; 2(1):119-139. https://doi.org/10.3390/iot2010007
Chicago/Turabian StyleTang, Keison, Arjun Kumar, Muhammad Nadeem, and Issam Maaz. 2021. "CNN-Based Smart Sleep Posture Recognition System" IoT 2, no. 1: 119-139. https://doi.org/10.3390/iot2010007
APA StyleTang, K., Kumar, A., Nadeem, M., & Maaz, I. (2021). CNN-Based Smart Sleep Posture Recognition System. IoT, 2(1), 119-139. https://doi.org/10.3390/iot2010007