Assessing Post-Fire Rockfall Hazards: A Case Study of Hazard System Adaptation and Application in Evros, Greece
Abstract
1. Introduction
1.1. Rockfall Activity and the Effects of Wildfires
1.2. Rockfall Hazard Assessment Methods
2. Insights from the Site-Specific Study
2.1. Study Area Description
2.2. Field Deployment
2.3. Trajectory Μodeling
3. Rockfall Hazard System Adaptation
3.1. Rockfall Hazard
3.2. Exposure and Vulnerability
3.3. Risk Quantification
4. Implementation Across the Burnt Area
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giannaros, T. Evros—The Largest Forest Fire of the Last 20 Years in Europe. Climatebook 2024. Available online: https://climatebook.gr/evros-i-megalyteri-dasiki-pyrkagia-ton-teleftaion-20-eton-stin-evropi/ (accessed on 10 May 2024).
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Gehring, E.; Maringer, J. Disturbance Calls for Disaster: Why forest fires increase landslides and rockfall hazards. Res. Outreach 2020, 112, 122–125. [Google Scholar]
- Cunningham, C.X.; Williamson, G.J.; Bowman, D.M. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 2024, 8, 1420–1425. [Google Scholar] [CrossRef]
- Vahedifard, F.; Abdollahi, M.; Leshchinsky, B.A.; Stark, T.D.; Sadegh, M.; AghaKouchak, A. Interdependencies between wildfire-induced alterations in soil properties, near-surface processes, and geohazards. Earth Space Sci. 2024, 11, e2023EA003498. [Google Scholar] [CrossRef]
- Scheidl, C.; Heiser, M.; Vospernik, S.; Lauss, E.; Perzl, F.; Kofler, A.; Kleemayr, K.; Bettella, F.; Lingua, E.; Garbarino, M. Assessing the protective role of alpine forests against rockfall at regional scale. Eur. J. For. Res. 2020, 139, 969–980. [Google Scholar] [CrossRef]
- De Graff, J.V.; Gallegos, A.J. The challenge of improving identification of rockfall hazard after wildfires. Environ. Eng. Geosci. 2012, 18, 389–397. [Google Scholar] [CrossRef]
- De Graff, J.V.; Shelmerdine, B.; Gallegos, A.; Annis, D. Uncertainty associated with evaluating rockfall hazard to roads in burned areas. Environ. Eng. Geosci. 2015, 21, 21–33. [Google Scholar] [CrossRef]
- Melzner, S.; Shtober-Zisu, N.; Katz, O.; Wittenberg, L. Brief communication: Post-wildfire rockfall risk in the eastern Alps. Nat. Hazards Earth Syst. Sci. 2019, 19, 2879–2885. [Google Scholar] [CrossRef]
- Pérez-Rey, I.; Sarro, R.; Tomás, R.; Alejano, L.R.; Gutiérrez, L.H.; Mateos, R.M.; Riquelme, A. A brief review of the effect of wildfires on rockfall occurrence. IOP Conf. Ser. Earth Environ. Sci. 2023, 1124, 012122. [Google Scholar] [CrossRef]
- Sarro, R.; Pérez-Rey, I.; Tomás, R.; Alejano, L.R.; Hernandez-Gutierrez, L.E.; Mateos, R.M. Effects of wildfire on rockfall occurrence: A review through actual cases in Spain. Appl. Sci. 2021, 11, 2545. [Google Scholar] [CrossRef]
- Moos, C.; Dorren, L.; Stoffel, M. Quantifying the effect of forests on frequency and intensity of rockfalls. Nat. Hazards Earth Syst. Sci. 2017, 17, 291–304. [Google Scholar] [CrossRef]
- Dorren, L.K.; Berger, F.; Le Hir, C.; Mermin, E.; Tardif, P. Mechanisms, effects and management implications of rockfall in forests. For. Ecol. Manag. 2005, 215, 183–195. [Google Scholar] [CrossRef]
- Dupire, S.; Bourrier, F.; Monnet, J.-M.; Bigot, S.; Borgniet, L.; Berger, F.; Curt, T. Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall. Ecol. Indic. 2016, 67, 98–107. [Google Scholar] [CrossRef]
- Stoffel, M.; Wehrli, A.; Kühne, R.; Dorren, L.K.; Perret, S.; Kienholz, H. Assessing the protective effect of mountain forests against rockfall using a 3D simulation model. For. Ecol. Manag. 2006, 225, 113–122. [Google Scholar] [CrossRef]
- Dorren, L.; Berger, F.; Putters, U. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Nat. Hazards Earth Syst. Sci. 2006, 6, 145–153. [Google Scholar] [CrossRef]
- Radtke, A.; Toe, D.; Berger, F.; Zerbe, S.; Bourrier, F. Managing coppice forests for rockfall protection: Lessons from modeling. Ann. For. Sci. 2014, 71, 485–494. [Google Scholar] [CrossRef]
- Lanfranconi, C.; Sala, G.; Frattini, P.; Crosta, G.; Valagussa, A. Assessing the rockfall protection efficiency of forests at the regional scale. Landslides 2020, 17, 2703–2721. [Google Scholar] [CrossRef]
- Song, K.; Yang, H.; Liang, D.; Chen, L.; Qu, L.; Chen, C. Assessment and Mechanism Analysis of Forest Protection against Rockfall in a Large Rock Avalanche Area. Forests 2023, 14, 1982. [Google Scholar] [CrossRef]
- Maringer, J.; Ascoli, D.; Dorren, L.; Bebi, P.; Conedera, M. Temporal trends in the protective capacity of burnt beech forests (Fagus sylvatica L.) against rockfall. Eur. J. For. Res. 2016, 135, 657–673. [Google Scholar] [CrossRef]
- Guasti, G.U.; Caprinali, A.; Majorca, L. Rockfall and debris flow hazards after summer wildfires in Cerreto Sannita, Benevento, Italy. Landslide Sci. Pract. 2013, 4, 217–225. [Google Scholar] [CrossRef]
- Ferrari, F.; Giacomini, A.; Thoeni, K. Qualitative rockfall hazard assessment: A comprehensive review of current rractices. Rock Mech. Rock Eng. 2016, 49, 2865–2922. [Google Scholar] [CrossRef]
- Sotiriadis, D.; Klimis, N.; Koutsoupaki, E.I.; Petala, E.; Valkaniotis, S.; Taftsoglou, M.; Margaris, V.; Dokas, I. Toward a plausible methodology to assess rock slope instabilities at a regional scale. Geosciences 2023, 13, 98. [Google Scholar] [CrossRef]
- Pierson, L.A. The Rockfall Hazard Rating System; Oregon State Highway Division, Engineering Geology Group: Salem, OR, USA, 1991. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Hadjin, D.J. New York State Department of Transportation rock slope rating procedure and rockfall assessment. Transp. Res. Rec. 2002, 1786, 60–68. [Google Scholar] [CrossRef]
- Budetta, P. Assessment of rockfall risk along roads. Nat. Hazards Earth Syst. Sci. 2004, 4, 71–81. [Google Scholar] [CrossRef]
- Maerz, N.H.; Youssef, A.; Fennessey, T.W. New risk–consequence rockfall hazard rating system for Missouri highways using digital image analysis. Environ. Eng. Geosci. 2005, 11, 229–249. [Google Scholar] [CrossRef]
- Shakoor, A.; Woodard, M.J. Development of a Rockfall Hazard Rating Matrix for the State of Ohio; Kent State University Dept of Geology: Kent, OH, USA, 2005. [Google Scholar]
- Santi, P.M.; Russell, C.P.; Higgins, J.D.; Spriet, J.I. Modification and statistical analysis of the Colorado rockfall hazard rating system. Eng. Geol. 2009, 104, 55–65. [Google Scholar] [CrossRef]
- Franklin, J.; Wood, D.; Senior, S.; Blair, J.; Wright, J. RHRON: Ontario Rockfall Hazard Rating System—Field Procedures Manual; Ontario Ministry of Transportation Materials Engineering and Research Office Report MERO-043; Ontario Ministry of Transportation (MTO): Toronto, ON, Canada, 2013. [Google Scholar]
- Saroglou, H.; Marinos, P.; Tsiambaos, G. Rockfall hazard and risk assessment: An example from a high promontory at the historical site of Monemvasia, Greece. Nat. Hazards Earth Syst. Sci. 2012, 12, 1823–1836. [Google Scholar] [CrossRef]
- Eggers, M.; Nash, T.; Dwumfour, D.; Turbitt, S.; Dixon, J. Natural Slope Hazard Management and Integration with Mining Operations; Australian Centre for Geomechanics: Perth, Australia, 2021. [Google Scholar] [CrossRef]
- Dorren, L.K. Rockyfor3D (v5. 2) Revealed—Transparent Description of the Complete 3D Rockfall Model; EcorisQ Paper: Geneva, Switzerland, 2015; Available online: http://www.ecorisq.org (accessed on 1 April 2024).
- Rocscience. Dips: Stereonet Analysis for Engineering Geology, Version 8.0; Rocscience Inc.: Toronto, ON, Canada, 2023. [Google Scholar]
- Saroglou, H.; Berger, F.; Bourrier, F.; Asteriou, P.; Tsiambaos, G.; Tsagkas, D. Effect of Forest Presence on Rockfall Trajectory. An Example from Greece. In Engineering Geology for Society and Territory-Volume 2: Landslide Processes; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Corona, C.; Lopez-Saez, J.; Favillier, A.; Mainieri, R.; Eckert, N.; Trappmann, D.; Stoffel, M.; Bourrier, F.; Berger, F. Modeling rockfall frequency and bounce height from three-dimensional simulation process models and growth disturbances in submontane broadleaved trees. Geomorphology 2017, 281, 66–77. [Google Scholar] [CrossRef]
- Fell, R.; Ho, K.K.; Lacasse, S.; Leroi, E. A Framework for Landslide Risk Assessment and Management. In Landslide Risk Management; CRC Press: Boca Raton, FL, USA, 2005; pp. 13–36. [Google Scholar]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- D’Amato, J.; Hantz, D.; Guerin, A.; Jaboyedoff, M.; Baillet, L.; Mariscal, A. Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat. Hazards Earth Syst. Sci. 2016, 16, 719–735. [Google Scholar] [CrossRef]
- Heim, A. Bergsturz und Menschenleben; Fretz und Wasmuth: Zurich, Switzerland, 1932. [Google Scholar]
- Evans, S.; Hungr, O. The assessment of rockfall hazard at the base of talus slopes. Can. Geotech. J. 1993, 30, 620–636. [Google Scholar] [CrossRef]
- Corominas, J. The angle of reach as a mobility index for small and large landslides. Can. Geotech. J. 1996, 33, 260–271. [Google Scholar] [CrossRef]
- RocScience. Rocfall—Probabilistic Analysis of Rockfalls on Slopes, Version 2023.1; Rocscience Inc.: Toronto, ON, Canada, 2024. [Google Scholar]
- Ashayer, P. Application of Rigid Body Impact Mechanics and Discrete Element Modeling to Rockfall Simulation; Library and Archives Canada: Ottawa, ON, Canada, 2007. [Google Scholar]
- Leine, R.I.; Schweizer, A.; Christen, M.; Glover, J.; Bartelt, P.; Gerber, W. Simulation of rockfall trajectories with consideration of rock shape. Multibody Syst. Dyn. 2014, 32, 241–271. [Google Scholar] [CrossRef]
- Bartelt, P.; Bieler, C.; Buhler, Y.; Christen, M.; Dreier, L.; Gerber, W.; Glover, J.; Schneider, M. RAMMS::ROCKFALL User Manual v1.8; WSL Institute for Snow and Avalanche Research SLF: Davos, Switzerland, 2024; p. 149. [Google Scholar]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
Class | Source Zone Conditions | Block Development | Marks |
---|---|---|---|
A—Tight | Tightly interlocked, undisturbed with closed defects | Not visible | 3 |
B | Between A and C | Between A and C | 9 |
C—Partially | Poorly interlocked, partially disturbed with defects open <10 mm | Some development | 27 |
D | Between C and E | Between C and E | 81 |
E—Loosened | Disconnected, disturbed with defects >10 mm | Clear development | 100 |
Class | Rockfall Scars | Past Evidence | Rockfall Fragments | Marks |
---|---|---|---|---|
A—No activity | Not visible | No accumulation | No fragments | 3 |
B | Between A and C | Between A and C | Between A and C | 9 |
C—Past activity | Visible, degraded | Some accumulation | Distinctly weathered | 27 |
D | Between C and E | Between C and E | Between C and E | 81 |
E—Recent activity | Visible, fresh | Significant accumulation | Fresh or slightly weathered | 100 |
Parameter | Discrete Values |
---|---|
Slope height, h [m] | 15, 30, 45 |
Slope angle, θ [°] | 45, 60, 75 |
Vegetation density, ρ, [m2/m2] | 0, 0.01, 0.03, 0.05 |
Block Volume, v [m3] | 0.01, 0.05, 0.1, 0.025, 0.5, 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asteriou, P.; Sotiriadis, D.; Petala, E.; Kazelis, L. Assessing Post-Fire Rockfall Hazards: A Case Study of Hazard System Adaptation and Application in Evros, Greece. GeoHazards 2025, 6, 54. https://doi.org/10.3390/geohazards6030054
Asteriou P, Sotiriadis D, Petala E, Kazelis L. Assessing Post-Fire Rockfall Hazards: A Case Study of Hazard System Adaptation and Application in Evros, Greece. GeoHazards. 2025; 6(3):54. https://doi.org/10.3390/geohazards6030054
Chicago/Turabian StyleAsteriou, Pavlos, Dimitris Sotiriadis, Eleni Petala, and Lampros Kazelis. 2025. "Assessing Post-Fire Rockfall Hazards: A Case Study of Hazard System Adaptation and Application in Evros, Greece" GeoHazards 6, no. 3: 54. https://doi.org/10.3390/geohazards6030054
APA StyleAsteriou, P., Sotiriadis, D., Petala, E., & Kazelis, L. (2025). Assessing Post-Fire Rockfall Hazards: A Case Study of Hazard System Adaptation and Application in Evros, Greece. GeoHazards, 6(3), 54. https://doi.org/10.3390/geohazards6030054