At the Intersection of Flood Risk and Social Vulnerability: A Case Study of New Orleans, Louisiana, USA
Abstract
:1. Introduction
1.1. Background
1.2. Study Site—The City of New Orleans
1.3. Geomorphology and Geology of New Orleans
1.4. Legislation Aimed at Reducing Flood Risk
1.5. Scope of Research
2. Methods
2.1. Data Acquisition
2.2. Flood Risk Assessment
2.3. Social Vulnerability Analysis
2.4. Composite Risk Mapping
3. Results
3.1. Flood Risk Assessment
3.2. Social Vulnerability Analysis
3.2.1. Global Moran’s I Cluster Analysis
3.2.2. Hot Spot Analysis (Getis-Ord-Gi*)
3.2.3. SVI Risk Analysis
3.3. Composite Risk Mapping
4. Discussion
4.1. Flood Risk Assessment
4.2. Social Vulnerability Analysis
4.3. Composite Risk Mapping
4.4. Limitations and Assumptions
5. Conclusions
- The temporal analysis of flood risk in New Orleans between 2000 and 2010 revealed some areas where flood mitigation measures reduced vulnerability.
- Despite flood risk intervention measures working in some areas in New Orleans, the spatiotemporal analysis of the composite risk maps revealed a probable resultant redistribution of risk. It highlighted increased continuous exposure to flood risk in most vulnerable areas, indicating insufficient flood mitigation strategies.
- The composite risk maps highlighted the most vulnerable areas where flood mitigation measures should be concentrated after further investigation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Englund, M.; Vieira Passos, M.; André, K.; Gerger Swartling, Å.; Segnestam, L.; Barquet, K. Constructing a social vulnerability index for flooding: Insights from a municipality in Sweden. Front. Clim. 2023, 5, 1038883. [Google Scholar] [CrossRef]
- Fox, S.; Agyemang, F.; Hawker, L.; Neal, J. Integrating social vulnerability into high-resolution global flood risk mapping. Nat. Commun. 2024, 15, 3155. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegri, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 1–33. [Google Scholar]
- UNDRR. Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2022; pp. 1–237. [Google Scholar]
- Tate, E.; Rahman, M.A.; Emrich, C.T.; Sampson, C.C. Flood exposure and social vulnerability in the United States. Nat. Hazards 2021, 106, 435–457. [Google Scholar] [CrossRef]
- Idowu, D. Assessing the Utilization of Remote Sensing and GIS Techniques for Flood Studies and Land Use/Land Cover Analysis through Case Studies in Nigeria and the USA. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2021. [Google Scholar]
- Kelman, A. A River and Its City: The Nature of Landscape in New Orleans; University of California Press: Oakland, CA, USA, 2003; p. 310. [Google Scholar]
- Colten, C.E. Basin Street blues: Drainage and environmental equity in New Orleans, 1890–1930. J. Hist. Geogr. 2002, 28, 237–257. [Google Scholar] [CrossRef]
- Dixon, T.H.; Amelung, F.; Ferretti, A.; Novali, F.; Rocca, F.; Dokka, R.K.; Sella, G.; Kim, S.W.; Wdowinski, S.; Whitman, D. Subsidence and flooding in New Orleans. Nature 2006, 441, 587–588. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.E.; An, K.; Blom, R.G.; Kent, J.; Ivins, E.R.; Bekaert, D. Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. J. Geophys. Res. Solid. Earth 2016, 121, 3867–3887. [Google Scholar] [CrossRef]
- Li, Z. Assessing Heat Vulnerability of New Orleans Using Multitemporal Remote Sensing and Demographic Data. Master’s Thesis, University of Michigan, Ann Arbor, MI, USA, 2021. [Google Scholar]
- National Weather Service: Climate. Available online: https://www.weather.gov/wrh/Climate?wfo=lix (accessed on 13 October 2023).
- Environmental Atlas of Lake Pontchartrain. Available online: https://pubs.usgs.gov/of/2002/of02-206/phy-environment/climate-intro.html (accessed on 13 October 2023).
- Hazard Mitigation Plan—New Orleans Profile. Available online: https://ready.nola.gov/hazard-mitigation/new-orleans-profile/#:~:text=The%20average%20annual%20precipitation%20is,nights%20with%20freezing%20lows%20annually (accessed on 18 November 2023).
- Dunbar, J.B.; Britsch, L.D., III. Geology of the New Orleans area and the canal levee failures. J. Geotech. Geoenviron. Eng. 2008, 134, 566–582. [Google Scholar] [CrossRef]
- Rogers, J.D.; Boutwell, G.; Watkins, C.; Karadeniz, D. Chapter 3: Geology of the New Orleans Region. In Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on 29 August 2005; Seed, R.B., Ed.; Independent Levee Investigation Team: Berkeley, CA, USA, 2006; Volume 1, pp. 1–49. [Google Scholar]
- Semmens, S.N.; Zhou, W.; Robbins, B. Empirical assessment of blanket thickness as an indicator of backward erosion piping, Lower Mississippi Valley, USA. Nat. Hazards Rev. 2021, 22, 04021001. [Google Scholar] [CrossRef]
- Semmens, S.N.; Zhou, W. Predicting backward erosion piping hazard, Lower Mississippi Valley, USA. Q. J. Eng. Geol. Hydrogeol. 2020, 54, qjegh2020-035. [Google Scholar] [CrossRef]
- Zhou, W. GIS for Earth Sciences, 2021. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: London, UK, 2021; Volume 6, pp. 281–293. [Google Scholar] [CrossRef]
- Rogers, J.D. Development of the New Orleans Flood Protection System prior to Hurricane Katrina. J. Geotech. Geoenviron. Eng. 2008, 134, 602–617. [Google Scholar] [CrossRef]
- van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H.; Merenlender, A. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef]
- Ohenhen, L.O.; Shirzaei, M.; Ojha, C.; Sherpa, S.F.; Nicholls, R.J. Disappearing cities on US coasts. Nature 2024, 627, 108–115. [Google Scholar] [CrossRef]
- National Weather Service: Hurricane Betsy 1965. Available online: https://www.weather.gov/lch/1965Betsy-WindPressure (accessed on 18 November 2023).
- Andersen, C.F.; Battjes, J.A.; Daniel, D.E.; Edge, B.; Espey, W.; Gilbert, R.B.; Jackson, T.L.; Kennedy, D.; Mileti, D.S.; Mitchell, J.K.; et al. The New Orleans Hurricane Protection System: What Went Wrong and Why; American Society of Civil Engineers: Reston, VA, USA, 2007; p. 84. [Google Scholar]
- Deryugina, T.; Kawano, L.; Levitt, S. The economic impact of Hurricane Katrina on its victims: Evidence from individual tax returns. AEJ Appl. Econ. 2018, 10, 202–233. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers: New Orleans District Engineering Division. Hurricane and Storm Damage Risk Reduction System Design Guidelines (Interim); U.S. Army Corps of Engineers: New Orleans, LA, USA, 2012; p. 606.
- Louisiana: City of New Orleans Structure Elevation Project. Available online: https://www.fema.gov/case-study/louisiana-city-new-orleans-structure-elevation-project (accessed on 20 November 2023).
- Ermagun, A.; Smith, V.; Janatabadi, F. High urban flood risk and no shelter access disproportionally impacts vulnerable communities in the USA. Commun. Earth Envion. 2004, 5, 2. [Google Scholar] [CrossRef]
- Idowu, D.; Zhou, W. Land use and land cover change assessment in the context of flood hazard in Lagos State, Nigeria. Water 2021, 13, 1105. [Google Scholar] [CrossRef]
- Huong, H.T.L.; Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 2013, 17, 379–394. [Google Scholar] [CrossRef]
- Idowu, D.; Zhou, W. Land Use Land Cover Assessment and Flood Hazard Mapping in Lagos State (Nigeria) Using Optical Remote Sensing Data. In Selected Studies in Geotechnics, Geo-Informatics and Remote Sensing. CAJG 2020; Ergüler, Z.A., Ed.; Advances in Science, Technology & Innovation; Springer: Cham, Germany, 2020. [Google Scholar] [CrossRef]
- Idowu, D.; Zhou, W. Global megacities and frequent floods: Correlation between urban expansion patterns and urban flood hazards. Sustainability 2023, 15, 2514. [Google Scholar] [CrossRef]
- Idowu, D.; Zhou, W. Spatiotemporal evaluation of flood potential indices for watershed flood prediction in the Mississippi River basin, USA. Environ. Eng. Geosci. 2021, 27, 319–330. [Google Scholar]
- Wdowinski, S.; Bray, R.; Kirtman, B.P.; Wu, Z. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach. Florida. Ocean Coast. Manag. 2016, 126, 1–8. [Google Scholar] [CrossRef]
- Hierholzer, E.; Bellamy, N.; Mannix, B.; Keenan, J. A quarterly technical assistance journal on disaster behavioral health. Dialogue 2017, 13, 1–14. [Google Scholar]
- Fussell, E.; Sastry, N.; VanLandingham, M. Race, socioeconomic status, and return migration to New Orleans after Hurricane Katrina. Popul. Environ. 2009, 31, 20–42. [Google Scholar] [CrossRef]
- Lee, S.; Dodge, J.L.; Chen, G. The cost of social vulnerability: An integrative conceptual framework and model for assessing financial risks in natural disaster management. Nat. Hazards 2022, 114, 691–712. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry—CDC/ATSDR SVI Data and Documentation Download. Available online: https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html (accessed on 21 November 2023).
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Stojanova, D.; Ceci, M.; Appice, A.; Malerba, D.; Džeroski, S. Global and local spatial autocorrelation in predictive clustering trees. In Lecture Notes in Computer; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Griffith, D.A. Spatial Autocorrelation: A Primer Resource Publications in Geography; The Association of American Geographers: Washington, DC, USA, 1987; p. 82. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Blais-Stevens, A.; Behnia, P. Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor, Canada. Nat. Hazards Earth Syst. Sci. 2016, 16, 449–462. [Google Scholar] [CrossRef]
- Zhou, W.; Minnick, M.; Chen, J.; Garret, J.; Acikalin, E. GIS-based landslide susceptibility analyses: Case studies at different scales. Nat. Hazards Rev. 2021, 22, 05021007. [Google Scholar] [CrossRef]
- Southerland, L.; Zhou, W. Comparison of two logistic regression models for landslide susceptibility analysis through a case study. Environ. Eng. Geosci. 2021, 27, 471–486. [Google Scholar]
Dataset | Data Type | Data Source |
---|---|---|
Building Permits (2018) | Feature Class | City of New Orleans GIS |
Flood Zone Map (2016, 2023) | Feature Class | LA State University, ESRI Living Atlas |
Historical Imagery (2004–2023) | Imagery | Google Earth Pro |
Ground Surface Elevation—30 m (2023) | Imagery | United States Geological Survey (USGS) |
Historic Crests (MS River Station) | Text File | National Weather Service |
Landsat 5 ETM+ C2 L2 (2000, 2010) | Satellite Imagery | USGS |
Landsat 8–9 OLI/TIRS C2 L2 (2015, 2020, 2023) | Satellite Imagery | USGS |
Orleans Parish Boundary | Feature Class | United States Census |
Social Vulnerability Index (2000, 2010, 2016, 2020) | Excel Spreadsheet | Centers for Disease Control and Prevention |
USA Detailed Water Bodies | Feature Class | ESRI Living Atlas |
Year | Acquisition Date | Path/Row | Spatial Resolution | Description |
---|---|---|---|---|
2000 | 18 April | 022/039 | 30 m | Landsat 5 ETM+ C2 L2 |
2010 | 29 March | |||
2016 | 13 March | Landsat 8 OLI C2 L2 | ||
2020 | 21 February |
Themes | Variables | |
---|---|---|
Overall Vulnerability | Theme 1: Socioeconomic Status | Below 150% Poverty |
Unemployed | ||
Housing Cost Burden | ||
No High School Diploma | ||
No Health Insurance | ||
Theme 2: Household Characteristics and Disability | Aged 65 and Older | |
Aged 17 and Younger | ||
Civilian with a Disability | ||
Single-Parent Households | ||
English Language Proficiency | ||
Theme 3: Racial and Ethnic Minority Status | Hispanic or Latino (of Any Race) | |
Black or African American | ||
Asian | ||
American Indian or Alaska Native | ||
Native Hawaiian or Pacific Islander | ||
Theme 4: Housing Type and Transportation | Multi-Unit Structures | |
Mobile Homes | ||
Crowding | ||
No Vehicle | ||
Group Quarters |
Year | Theme | MI | Z-Score | p-Value |
---|---|---|---|---|
2000 | Theme 1 | 0.411032 | 1.058585 | 0.160780 |
Theme 2 | 0.360192 | 0.976892 | 0.157249 | |
Theme 3 | 0.290080 | 0.630543 | 0.184702 | |
Theme 4 | 0.282881 | 0.692199 | 0.175980 | |
Overall | 0.407780 | 0.961963 | 0.167249 | |
2010 | Theme 1 | 0.323068 | 0.821797 | 0.169317 |
Theme 2 | 0.414085 | 1.149309 | 0.120244 | |
Theme 3 | 0.213016 | 0.367835 | 0.175288 | |
Theme 4 | 0.224861 | 0.510305 | 0.185805 | |
Overall | 0.346401 | 0.876604 | 0.159512 | |
Theme 1 | 0.460140 | 1.180311 | 0.133454 | |
Theme 2 | 0.359071 | 1.004467 | 0.127298 | |
2016 | Theme 3 | 0.336718 | 0.780958 | 0.150273 |
Theme 4 | 0.172480 | 0.389221 | 0.214547 | |
Overall | 0.380554 | 0.459631 | 0.198585 | |
Theme 1 | 0.467426 | 1.223517 | 0.119863 | |
Theme 2 | 0.250201 | 0.497472 | 0.155912 | |
2020 | Theme 3 | 0.551425 | 1.457020 | 0.114127 |
Theme 4 | 0.189631 | 0.534262 | 0.213180 | |
Overall | 0.417238 | 1.035052 | 0.137502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Rosabel, S.; Idowu, D.; Zhou, W. At the Intersection of Flood Risk and Social Vulnerability: A Case Study of New Orleans, Louisiana, USA. GeoHazards 2024, 5, 866-885. https://doi.org/10.3390/geohazards5030044
Garcia-Rosabel S, Idowu D, Zhou W. At the Intersection of Flood Risk and Social Vulnerability: A Case Study of New Orleans, Louisiana, USA. GeoHazards. 2024; 5(3):866-885. https://doi.org/10.3390/geohazards5030044
Chicago/Turabian StyleGarcia-Rosabel, Stefanie, Dorcas Idowu, and Wendy Zhou. 2024. "At the Intersection of Flood Risk and Social Vulnerability: A Case Study of New Orleans, Louisiana, USA" GeoHazards 5, no. 3: 866-885. https://doi.org/10.3390/geohazards5030044
APA StyleGarcia-Rosabel, S., Idowu, D., & Zhou, W. (2024). At the Intersection of Flood Risk and Social Vulnerability: A Case Study of New Orleans, Louisiana, USA. GeoHazards, 5(3), 866-885. https://doi.org/10.3390/geohazards5030044