Addressing the Effect of Intra-Seasonal Variations in Developing Rainfall Thresholds for Landslides: An Antecedent Rainfall-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- (i)
- The rain gauge observations are interpolated to create a continuous gridded rainfall product that provides the best linear unbiased rainfall estimate (Irg). Here, the resolution of the interpolated product is kept the same as that of the satellite product (GPM IMERG-L, 0.1 degrees);
- (ii)
- The satellite pixel values corresponding to the rain gauge locations are interpolated to create a continuous gridded rainfall product (Srg);
- (iii)
- The continuous rainfall product thus obtained (Srg) is subtracted from the original satellite product (S). This difference (S − Srg) gives a gridded error product;
- (iv)
- The error product obtained in step (iii) is added to the rainfall product obtained in step (i) (Irg). The result is a rainfall-gridded product that follows the mean field of the rain gauge interpolation while preserving the rainfall pattern of the satellite product.
- CM is the conditionally merged rainfall at each grid;
- Irg is the interpolation product of the rain gauge observations;
- S is the satellite (gridded) product;
- Srg is the interpolation product of the satellite estimations in the location of rain gauges.
2.3. Methods
2.3.1. Rainfall Threshold Development
- (i)
- Monsoon antecedent (MA): for every landslide event, the cumulative rainfall from the beginning of the monsoon season to the day prior to the date of the landslide was calculated;
- (ii)
- Event antecedent (EA): for every landslide event, the cumulative rainfall from the first day of the event to the day prior to the date of the landslide was calculated;
- (iii)
- Monsoon antecedent average (MAA): the average monsoon antecedent rainfall was computed for every landslide event by dividing the monsoon antecedent by the number of days from the beginning of the monsoon to the day prior to the date of the landslide;
- (iv)
- Event antecedent average (EAA): the average event antecedent rainfall was computed for every landslide event by dividing the event antecedent by the number of days from the beginning of the event to the day prior to the date of the landslide.
- (i)
- A critical value for extreme daily and antecedent rainfall was defined with an assumption that exceeding this critical value always causes a landslide;
- (ii)
- A threshold for the non-extreme daily and antecedent rainfall was defined using a best-fit line that represents the trend of these data.
- (i)
- When continuous rainfall occurs over several days;
- (ii)
- A sudden rainfall of a large quantity occurs over a day.
- D is the rainfall on any day;
- Dt is the critical value for extreme daily rainfall;
- A is the nth antecedent rainfall, where n corresponds to the number of days of antecedent rainfall;
- At is the critical value for extreme antecedent rainfall.
2.3.2. Regression Modeling
- y is the daily rainfall;
- x is the expected antecedent rainfall;
- m is the slope;
- c is the y-axis intercept.
- (i)
- Ordinary least square regression (OLS);
- (ii)
- Quantile regression (QR).
- (i)
- The critical daily rainfall above which a landslide always occurs, represented in the form y = x;
- (ii)
- The critical antecedent rainfall above which a landslide always occurs, represented in the form x = y;
- (iii)
- The model for predicting landslide initiation in cases of non-extreme daily and antecedent rainfall, represented in the form y = mx +c.
- (i)
- The forecasted daily rainfall on a particular day is above the daily critical rainfall;
- (ii)
- The forecasted antecedent rainfall for a particular day is above the antecedent critical rainfall;
- (iii)
- Both daily and antecedent rainfall forecasts for a particular day are below the corresponding critical rainfalls, but the forecasted daily rainfall is above the daily rainfall value predicted by the regression model developed from the 4th quadrant.
2.3.3. Validation
- Sensitivity is defined as (TP)/(TP + FN);
- Specificity is defined as (TN)/(TN + FP);
- Efficiency is defined as (TP + TN)/(TP + FP + FN + TN);
- False positive rate is defined as (FP)/(FP + TN).
3. Results
3.1. Understanding the Variations in Intra-Seasonal Rainfall
3.2. Rainfall Threshold Calculation for the First Wave of Monsoon
- (i)
- The critical values for extreme daily and extreme monsoon antecedent rainfall are 213 mm and 2921 mm, respectively, and whenever the daily or antecedent rainfall forecast is above these values, a landslide is predicted to occur;
- (ii)
- For non-extreme rainfall, a landslide is predicted if the daily rainfall forecast is above the value given by the model:y = 0.0212x + 51.0556
- y is the predicted daily rainfall;
- x is the corresponding monsoon antecedent rainfall.
3.3. Rainfall Threshold Calculation for the Second Wave of Monsoon
- y is the daily rainfall threshold required to trigger a landslide;
- x is the corresponding monsoon antecedent rainfall.
3.4. Rainfall Threshold without Considering Intra-Seasonal Variation
- (i)
- A rainfall threshold for extreme precipitation for the 1st wave of monsoon;
- (ii)
- A rainfall threshold for non-extreme precipitation for the 1st wave of monsoon;
- (iii)
- A rainfall threshold for extreme precipitation for the 2nd wave of monsoon;
- (iv)
- A rainfall threshold for non-extreme precipitation for the 2nd wave of monsoon.
3.5. Limitations of the Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazmi, D.; Qasim, S.; Harahap, I.S.H.; Baharom, S.; Imran, M.; Moin, S. A study on the contributing factors of major landslides in Malaysia. Civ. Eng. J. 2016, 2, 669–678. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Kuriakose, S.L.; Sankar, G.; Muraleedharan, C. History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environ. Geol. 2009, 57, 1553–1568. [Google Scholar] [CrossRef]
- Jain, N.; Martha, T.R.; Khanna, K.; Roy, P.; Kumar, K.V. Major landslides in Kerala, India, during 2018–2020 period: An analysis using rainfall data and debris flow model. Landslides 2021, 18, 3629–3645. [Google Scholar] [CrossRef]
- Ramasamy, S.M.; Gunasekaran, S.; Saravanavel, J.; Joshua, R.M.; Rajaperumal, R.; Kathiravan, R.; Muthukumar, M. Geomorphology and landslide proneness of Kerala, India A geospatial study. Landslides 2021, 18, 1245–1258. [Google Scholar] [CrossRef]
- Achu, A.L.; Joseph, S.; Aju, C.D.; Mathai, J. Preliminary analysis of a catastrophic landslide event on 6 August 2020 at Pettimudi, Kerala State, India. Landslides 2021, 18, 1459–1463. [Google Scholar] [CrossRef]
- Ajin, R.S.; Nandakumar, D.; Rajaneesh, A.; Oommen, T.; Ali, Y.P.; Sajinkumar, K.S. The tale of three landslides in the Western Ghats, India: Lessons to be learnt. Geoenvironmental Disasters 2022, 9, 16. [Google Scholar] [CrossRef]
- Zhai, X.; Guo, L.; Liu, R.; Zhang, Y. Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern. Nat. Hazards 2018, 94, 605–625. [Google Scholar] [CrossRef]
- Monsieurs, E.; Dewitte, O.; Demoulin, A. A susceptibility-based rainfall threshold approach for landslide occurrence. Nat. Hazards Earth Syst. Sci. 2019, 19, 775–789. [Google Scholar] [CrossRef]
- Pradhan, A.M.S.; Lee, S.R.; Kim, Y.T. A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea. Landslides 2019, 16, 647–659. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Han, D.; Dai, H.; Mao, J.; Zhuo, L. Probabilistic thresholds for landslides warning by integrating soil moisture conditions with rainfall thresholds. J. Hydrol. 2019, 574, 276–287. [Google Scholar] [CrossRef]
- Dikshit, A.; Satyam, N.; Pradhan, B.; Kushal, S. Estimating rainfall threshold and temporal probability for landslide occurrences in Darjeeling Himalayas. Geosci. J. 2020, 24, 225–233. [Google Scholar] [CrossRef]
- Maturidi, A.M.A.M.; Kasim, N.; Taib, K.A.; Azahar, W.N.A.W.; Tajuddin, H.B.A. Empirically Based Rainfall Threshold for Landslides Occurrence in Peninsular Malaysia. KSCE J. Civ. Eng. 2021, 25, 4552–4566. [Google Scholar] [CrossRef]
- Vessia, G.; Parise, M.; Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Vennari, C.; Guzzetti, F. Automated reconstruction of rainfall events responsible for shallow landslides. Nat. Hazards Earth Syst. Sci. 2014, 14, 2399–2408. [Google Scholar] [CrossRef]
- He, J.; Qiu, H.; Qu, F.; Hu, S.; Yang, D.; Shen, Y.; Cao, M. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena 2021, 197, 104999. [Google Scholar] [CrossRef]
- Conte, E.; Pugliese, L.; Troncone, A. A Simple Method for Predicting Rainfall-Induced Shallow Landslides. J. Geotech. Geoenvironmental Eng. 2022, 148, 04022079. [Google Scholar] [CrossRef]
- Crozier, M.J. The climate-landslide couple: A southern hemisphere perspective. In Rapid Mass Movement as a Source of Climatic Evidence for the Holocene; Georg Fischer: Schaffhausen, Switzerland, 1997; pp. 333–354. [Google Scholar]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar]
- Crosta, G.B.; Frattini, P. Rainfall thresholds for triggering soil slips and debris flow. In Proceeding of the 2nd EGS Plinius Conference on Mediterranean Storms, Siena, Italy, 1–3 October 2001; Volume 1, pp. 463–487. [Google Scholar]
- Gariano, S.L.; Brunetti, M.T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665. [Google Scholar] [CrossRef]
- Fusco, F.; Bordoni, M.; Tufano, R.; Vivaldi, V.; Meisina, C.; Valentino, R.; De Vita, P. Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides. Nat. Hazards 2022, 114, 907–939. [Google Scholar] [CrossRef]
- Bordoni, M.; Corradini, B.; Lucchelli, L.; Valentino, R.; Bittelli, M.; Vivaldi, V.; Meisina, C. Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of Northern Italian Apennines. Water 2019, 11, 2653. [Google Scholar] [CrossRef]
- Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 633–646. [Google Scholar] [CrossRef]
- Segoni, S.; Rossi, G.; Rosi, A.; Catani, F. Landslides triggered by rainfall: A semi-automated procedure to define consistent intensity–duration thresholds. Comput. Geosci. 2014, 63, 123–131. [Google Scholar] [CrossRef]
- Innes, J.L. Debris flows. Prog. Phys. Geogr. 1983, 7, 469–501. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Napolitano, E.; Fusco, F.; Baum, R.L.; Godt, J.W.; De Vita, P. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy). Landslides 2016, 13, 967–983. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Floris, M.; Bozzano, F. Evaluation of landslide reactivation: A modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 2008, 94, 40–57. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Zhu, X.; Li, W. The power–law relationship between landslide occurrence and rainfall level. Geomorphology 2011, 130, 221–229. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139, 79–90. [Google Scholar] [CrossRef]
- Lainas, S.; Sabatakakis, N.; Koukis, G. Rainfall thresholds for possible landslide initiation in wildfire-affected areas of western Greece. Bull. Eng. Geol. Environ. 2016, 75, 883–896. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Liu, S. Rainfall event–duration thresholds for landslide occurrences in China. Water 2020, 12, 494. [Google Scholar] [CrossRef]
- Crozier, M.J. Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 1999, 24, 825–833. [Google Scholar] [CrossRef]
- Glade, T.; Crozier, M.; Smith, P. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure Appl. 2000, 157, 1059–1079. [Google Scholar] [CrossRef]
- Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Sharma, S. Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides 2014, 11, 629–638. [Google Scholar] [CrossRef]
- Leonarduzzi, E.; Molnar, P. Deriving rainfall thresholds for landsliding at the regional scale: Daily and hourly resolutions, normalization, and antecedent rainfall. Nat. Hazards Earth Syst. Sci. 2020, 20, 2905–2919. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Rosi, A.; Pradhan, B.; Segoni, S. Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning. Catena 2021, 200, 105147. [Google Scholar] [CrossRef]
- Kim, S.W.; Chun, K.W.; Kim, M.; Catani, F.; Choi, B.; Seo, J.I. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 2021, 18, 569–582. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, G.; Guo, L.; Tang, X.; Wang, J.; Li, H. Coupling antecedent rainfall for improving the performance of rainfall thresholds for suspended sediment simulation of semiarid catchments. Sci. Rep. 2022, 12, 4816. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Rosi, A.; Pradhan, B.; Segoni, S. The selection of rain gauges and rainfall parameters in estimating intensity-duration thresholds for landslide occurrence: Case study from Wayanad (India). Water 2020, 12, 1000. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Melillo, M.; Peruccacci, S.; Ciabatta, L.; Brocca, L. How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens. Environ. 2018, 210, 65–75. [Google Scholar] [CrossRef]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Kim, T.J.; Lee, D.R.; Kwon, H.H. Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation methods. J. Korea Water Resour. Assoc. 2017, 50, 849–862. [Google Scholar]
- Vishnu, C.L.; Oommen, T.; Chatterjee, S.; Sajinkumar, K.S. Challenges of modeling rainfall triggered landslides in a data-sparse region: A case study from the Western Ghats, India. Geosystems Geoenvironment 2022, 1, 100060. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Zhuo, L.; Mao, J.; Zhu, S.; Han, D. Accounting for satellite rainfall uncertainty in rainfall-triggered landslide forecasting. Geomorphology 2022, 398, 108051. [Google Scholar] [CrossRef]
- Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M.T.; Peruccacci, S.; Guzzetti, F. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 2017, 285, 16–27. [Google Scholar] [CrossRef]
- Chikalamo, E.E.; Mavrouli, O.C.; Ettema, J.; van Westen, C.J.; Muntohar, A.S.; Mustofa, A. Satellite-derived rainfall thresholds for landslide early warning in Bogowonto Catchment, Central Java, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102093. [Google Scholar] [CrossRef]
- Hao, L.; Rajaneesh, A.; Van Westen, C.; Sajinkumar, K.S.; Martha, T.R.; Jaiswal, P.; McAdoo, B.G. Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis. Earth Syst. Sci. Data 2020, 12, 2899–2918. [Google Scholar] [CrossRef]
- Neumayer, E.; Barthel, F. Normalizing economic loss from natural disasters: A global analysis. Glob. Environ. Change 2011, 21, 13–24. [Google Scholar] [CrossRef]
- De Falco, M.; Forte, G.; Marino, E.; Massaro, L.; Santo, A. UAV and field survey observations on the 26 November 2022 Celario flow-slide, Ischia(Southern Italy). J. Maps 2023, 19. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P. Rainfall-induced landslides and debris flows. Hydrol. Process. Int. J. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Lee, M.L.; Ng, K.Y.; Huang, Y.F.; Li, W.C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat. Hazards 2014, 70, 353–375. [Google Scholar] [CrossRef]
- Sajinkumar, K.S.; Anbazhagan, S.; Pradeepkumar, A.P.; Rani, V.R. Weathering and landslide occurrences in parts of Western Ghats, Kerala. J. Geol. Soc. India 2011, 78, 249–257. [Google Scholar] [CrossRef]
- Vijaykumar, P.; Abhilash, S.; Sreenath, A.V.; Athira, U.N.; Mohanakumar, K.; Mapes, B.E.; Sreejith, O.P. Kerala floods in consecutive years-Its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India. Weather. Clim. Extrem. 2021, 33, 100339. [Google Scholar] [CrossRef]
- Jones, S.; Kasthurba, A.K.; Bhagyanathan, A.; Binoy, B.V. Landslide susceptibility investigation for Idukki district of Kerala using regression analysis and machine learning. Arab. J. Geosci. 2021, 14, 838. [Google Scholar] [CrossRef]
- Hao, L.; van Westen, C.; Rajaneesh, A.; Sajinkumar, K.S.; Martha, T.R.; Jaiswal, P. Evaluating the relation between land use changes and the 2018 landslide disaster in Kerala, India. Catena 2022, 216, 106363. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Mann–Whitney U Test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Abraham, M.T.; Pothuraju, D.; Satyam, N. Rainfall thresholds for prediction of landslides in Idukki, India: An empirical approach. Water 2019, 11, 2113. [Google Scholar] [CrossRef]
- Naidu, S.; Sajinkumar, K.S.; Oommen, T.; Anuja, V.J.; Samuel, R.A.; Muraleedharan, C. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci. Front. 2018, 9, 1871–1882. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J. Appl. Meteorol. Climatol. 2006, 45, 108–124. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J. Regression analyses for the minimum intensity-duration conditions of continuous rainfall for mudflows triggering in Yan’an, northern Shaanxi (China). Bull. Eng. Geol. Environ. 2014, 73, 917–928. [Google Scholar] [CrossRef]
- Marra, F.; Destro, E.; Nikolopoulos, E.I.; Zoccatelli, D.; Creutin, J.D.; Guzzetti, F.; Borga, M. Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds. Hydrol. Earth Syst. Sci. 2017, 21, 4525–4532. [Google Scholar] [CrossRef]
- Wilkinson, G.N.; Rogers, C.E. Symbolic description of factorial models for analysis of variance. J. R. Stat. Soc. Ser. C Appl. Stat. 1973, 22, 392–399. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
Threshold | TP | FP | FN | TN | Sensitivity | Specificity | Efficiency | FP Rate |
---|---|---|---|---|---|---|---|---|
1-day | 11 | 17 | 0 | 38 | 1.00 | 0.69 | 0.74 | 0.31 |
2-day | 12 | 19 | 0 | 41 | 1.00 | 0.68 | 0.74 | 0.32 |
3-day | 12 | 27 | 0 | 33 | 1.00 | 0.55 | 0.63 | 0.45 |
5-day | 12 | 39 | 0 | 21 | 1.00 | 0.35 | 0.46 | 0.65 |
10-day | 11 | 9 | 0 | 46 | 1.00 | 0.84 | 0.86 | 0.16 |
20-day | 12 | 11 | 0 | 49 | 1.00 | 0.82 | 0.85 | 0.18 |
30-day | 10 | 11 | 0 | 39 | 1.00 | 0.78 | 0.82 | 0.22 |
40-day | 10 | 8 | 0 | 42 | 1.00 | 0.84 | 0.87 | 0.16 |
MA | 11 | 8 | 0 | 47 | 1.00 | 0.85 | 0.88 | 0.15 |
EA | 12 | 14 | 0 | 46 | 1.00 | 0.77 | 0.81 | 0.23 |
MAA | 12 | 11 | 0 | 49 | 1.00 | 0.82 | 0.85 | 0.18 |
EAA | 11 | 16 | 0 | 39 | 1.00 | 0.71 | 0.76 | 0.29 |
Threshold | TP | FP | FN | TN | Sensitivity | Specificity | Efficiency | FP Rate |
---|---|---|---|---|---|---|---|---|
OLS | 5 | 10 | 9 | 60 | 0.36 | 0.86 | 0.77 | 0.14 |
LAD | 8 | 13 | 6 | 57 | 0.57 | 0.81 | 0.77 | 0.19 |
LQ | 12 | 39 | 2 | 31 | 0.86 | 0.44 | 0.51 | 0.56 |
UQ | 2 | 2 | 12 | 68 | 0.14 | 0.97 | 0.83 | 0.03 |
MA Total (Quadrants 1, 2, 3 and 4) | 19 | 21 | 6 | 104 | 0.76 | 0.83 | 0.82 | 0.17 |
Threshold | TP | FP | FN | TN | Sensitivity | Specificity | Efficiency | FP Rate |
---|---|---|---|---|---|---|---|---|
1-day | 8 | 23 | 0 | 17 | 1 | 0.43 | 0.52 | 0.58 |
2-day | 8 | 29 | 0 | 11 | 1 | 0.28 | 0.40 | 0.73 |
3-day | 8 | 33 | 0 | 7 | 1 | 0.18 | 0.31 | 0.83 |
5-day | 8 | 29 | 0 | 11 | 1 | 0.28 | 0.40 | 0.73 |
10-day | 8 | 26 | 0 | 14 | 1 | 0.35 | 0.46 | 0.65 |
20-day | 8 | 25 | 0 | 15 | 1 | 0.38 | 0.48 | 0.63 |
30-day | 8 | 31 | 0 | 9 | 1 | 0.23 | 0.35 | 0.78 |
40-day | 8 | 30 | 0 | 10 | 1 | 0.25 | 0.38 | 0.75 |
MA | 9 | 33 | 0 | 12 | 1 | 0.27 | 0.39 | 0.73 |
EA | 7 | 18 | 0 | 17 | 1 | 0.49 | 0.57 | 0.51 |
MAA | 10 | 43 | 0 | 7 | 1 | 0.14 | 0.28 | 0.86 |
EAA | 9 | 33 | 0 | 12 | 1 | 0.27 | 0.39 | 0.73 |
Threshold | TP | FP | FN | TN | Sensitivity | Specificity | Efficiency | FP Rate |
---|---|---|---|---|---|---|---|---|
OLS | 4 | 28 | 5 | 17 | 0.44 | 0.38 | 0.39 | 0.62 |
LAD | 4 | 36 | 5 | 9 | 0.44 | 0.20 | 0.24 | 0.80 |
EA Total (Quadrants 1, 2, 3 and 4) | 11 | 46 | 5 | 34 | 0.69 | 0.43 | 0.47 | 0.58 |
Threshold Type | TP | FP | FN | TN | Sensitivity | Specificity | Efficiency | FP Rate |
---|---|---|---|---|---|---|---|---|
1-day | 17 | 28 | 0 | 57 | 1.00 | 0.67 | 0.73 | 0.33 |
2-day | 18 | 26 | 0 | 64 | 1.00 | 0.71 | 0.76 | 0.29 |
3-day | 18 | 34 | 0 | 56 | 1.00 | 0.62 | 0.69 | 0.38 |
5-day | 16 | 55 | 0 | 25 | 1.00 | 0.31 | 0.43 | 0.69 |
10-day | 15 | 10 | 0 | 65 | 1.00 | 0.87 | 0.89 | 0.13 |
20-day | 15 | 17 | 0 | 58 | 1.00 | 0.77 | 0.81 | 0.23 |
30-day | 16 | 36 | 0 | 44 | 1.00 | 0.55 | 0.63 | 0.45 |
40-day | 15 | 10 | 0 | 65 | 1.00 | 0.87 | 0.89 | 0.13 |
MA | 19 | 28 | 0 | 67 | 1.00 | 0.71 | 0.75 | 0.29 |
EA | 15 | 15 | 0 | 60 | 1.00 | 0.80 | 0.83 | 0.20 |
MAA | 15 | 23 | 0 | 52 | 1.00 | 0.69 | 0.74 | 0.31 |
EAA | 16 | 47 | 0 | 33 | 1.00 | 0.41 | 0.51 | 0.59 |
Threshold Type | TP | FP | FN | TN | Sensitivity | Specificity | Efficiency | FP Rate |
---|---|---|---|---|---|---|---|---|
10-dayOLS | 8 | 43 | 18 | 87 | 0.31 | 0.67 | 0.61 | 0.33 |
10-dayLAD | 13 | 66 | 13 | 64 | 0.50 | 0.49 | 0.49 | 0.51 |
40-dayOLS | 9 | 38 | 17 | 92 | 0.35 | 0.71 | 0.65 | 0.29 |
40-dayLAD | 12 | 55 | 14 | 75 | 0.46 | 0.58 | 0.56 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishnu, C.L.; Oommen, T.; Chatterjee, S.; Sajinkumar, K.S. Addressing the Effect of Intra-Seasonal Variations in Developing Rainfall Thresholds for Landslides: An Antecedent Rainfall-Based Approach. GeoHazards 2024, 5, 634-651. https://doi.org/10.3390/geohazards5030033
Vishnu CL, Oommen T, Chatterjee S, Sajinkumar KS. Addressing the Effect of Intra-Seasonal Variations in Developing Rainfall Thresholds for Landslides: An Antecedent Rainfall-Based Approach. GeoHazards. 2024; 5(3):634-651. https://doi.org/10.3390/geohazards5030033
Chicago/Turabian StyleVishnu, Chakrapani Lekha, Thomas Oommen, Snehamoy Chatterjee, and Kochappi Sathyan Sajinkumar. 2024. "Addressing the Effect of Intra-Seasonal Variations in Developing Rainfall Thresholds for Landslides: An Antecedent Rainfall-Based Approach" GeoHazards 5, no. 3: 634-651. https://doi.org/10.3390/geohazards5030033
APA StyleVishnu, C. L., Oommen, T., Chatterjee, S., & Sajinkumar, K. S. (2024). Addressing the Effect of Intra-Seasonal Variations in Developing Rainfall Thresholds for Landslides: An Antecedent Rainfall-Based Approach. GeoHazards, 5(3), 634-651. https://doi.org/10.3390/geohazards5030033