Exposure of Agroforestry Workers to Airborne Particulate Matter and Implications Under Climate Change: A Review
Abstract
1. Introduction
2. Methods
3. Health Risks from Exposure to Airborne Particulate Matter (PM2.5 and PM10)
3.1. Inhalation Risks
3.2. Contact Risks
3.3. Environmental Risks
4. Particulate Matter Generated by Agro-Forestry Machinery and Equipment
4.1. PM Generated by Agricultural Practices
4.1.1. Cultivation Practices: Soil Tillage, Sowing, Harvesting
4.1.2. Use of Dressed Seeds
4.1.3. Use of Pesticides for Crop Protection
4.1.4. Use of Fertilizers
4.2. PM Generated by Forestry Activities
4.2.1. Wood Characteristics
4.2.2. Timber Production: Use of Chainsaws for Felling and Limbing
4.2.3. Woodchip Production
5. General Conclusions and Future Perspectives
5.1. Emerging Technological Solutions for Risk Monitoring and Management
- IoT-based Environmental Sensing: Optical sensors integrated into portable or stationary platforms (e.g., Sensirion SPS30 on Arduino microcontrollers with Wi-Fi or LoRaWAN connectivity) allow for real-time detection of PM1, PM2.5, PM4.0, and PM10 concentrations. These systems, which can be mounted on agricultural machinery, in greenhouses, or along farm boundaries, feed cloud-based dashboards for dynamic visualization of emissions during critical operations (e.g., pesticide applications or plowing under dry conditions).
- Automated Mobile Monitoring: Drones and agricultural rovers equipped with multiparametric sensors (PM, temperature, humidity) enable three-dimensional mapping of particulate dispersion over large or hard-to-reach areas, such as sloped forested regions or isolated fields. These technologies are particularly valuable for identifying emission hotspots and assessing the impact of environmental conditions (e.g., dry winds) on PM accumulation.
- AI-based Predictive Modelling: Machine learning algorithms such as Random Forests or recurrent neural networks enable the development of predictive models to estimate the evolution of particulate emissions as a function of meteorological variables, agricultural activity schedules, and the specific characteristics of particulate matter. Trained on localized historical data, these models not only help anticipate emission peaks and support the planning of preventive measures (such as activating abatement systems or rescheduling operations) but also generate evolutionary scenarios and identify previously unrecognized risk patterns by correlating exposure levels with epidemiological data on occupational diseases.
- Integrated Alert Systems: Advanced ICT platforms can trigger automatic alerts (push notifications, SMS, field displays) when safety thresholds are exceeded. In operational applications, for example, pesticide treatments in vineyards can be suspended upon detection of critical PM concentrations, or irrigation systems can be activated to suppress airborne dust.
5.2. Development Prospects and Operational Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PM | Particulate Matter |
AI | Artificial Intelligence |
ILO | International Labour Organization |
UAA | Utilized Agricultural Area |
FAO | Food and Agriculture Organization of the United Nations |
EU-OSHA | European Agency for Safety and Health at Work |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
WHO | World Health Organization |
AQGs | Air Quality Guidelines |
PIACT | Programme for the Improvement of Working Conditions and Environment |
OSHA | Occupational Safety and Health Standards |
IARC | International Agency for Research on Cancer |
VOCs | Volatile Organic Compounds |
AOEL | Acceptable Operator Exposure Level |
USA | United States of America |
PEL | Permissible Exposure Limit |
ACGIH | American Conference of Governmental Industrial Hygienists |
TLV-TWA | Threshold Limit Value—Time-Weighted Average |
EU | European Union |
ROS | Reactive Oxygen Species |
PPE | Personal Protective Equipment |
PAHs | Polycyclic Aromatic Hydrocarbons |
IoT | Internet of Things |
LoRaWAN | Long Range Wide Area Network |
ICT | Integrated Alert Systems |
INAIL | National Institute for Insurance Against Accidents at Work |
CNR | National Research Council |
References
- FAO. FAO and the Sustainable Development Goals. Achieving the 2030 Agenda Through Empowerment of Local Communities; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Eurofound. Job Quality Side of Climate Change; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- ANSES. Évaluation Des Risques Pour La Santé Des Travailleurs Liés Aux Changements Climatiques. Avis De l’ANSES; ANSES: Maisons-Alfort, France, 2018. [Google Scholar]
- Dasgupta, S.; Robinson, E.J.Z.; Males, J. The labour force in a changing climate: Research and policy needs. PLoS Clim. 2023, 2, e0000131. [Google Scholar] [CrossRef]
- International Labour Organization (ILO). Ensuring Safety and Health at Work in a Changing Climate, Global Report; International Labour Organization (ILO): Geneva, Switzerland, 2024; ISBN 9789220405079. [Google Scholar]
- EU-OSHA. The Links Between Exposure to Work-Related Psychosocial Risk Factors and Cardiovascular Disease. Available online: https://osha.europa.eu/en/publications/links-between-exposure-work-related-psychosocial-risk-factors-and-cardiovascular-disease (accessed on 23 March 2023).
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- FAO. World Food and Agriculture–Statistical Yearbook 2024; FAO: Rome, Italy, 2024; ISBN 978-92-5-139255-3. [Google Scholar]
- Charvet, J.-P. Atlas de L’agriculture: Comment Pourra-t-on Nourrir le Monde en 2050? Éditions Autrement: Paris, France, 2010; ISBN 9782080416278. [Google Scholar]
- FAO. World Food and Agriculture–Statistical Yearbook 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240034228. [Google Scholar]
- International Labour Organization (ILO). Working Environment (Air Pollution, Noise and Vibration) Convention, Geneva, n.148. 1977. Available online: https://normlex.ilo.org/dyn/nrmlx_en/f?p=normlexpub:12100:0::no:12100:p12100_instrument_id:312293:no (accessed on 30 July 2025).
- International Labour Office. Occupational Exposure to Airborne Substances Harmful to Health; ILO: Geneva, Switzerland, 1980; ISBN 92-2-102442-3. [Google Scholar]
- Organizzazione Internazionale del Lavoro (ILO). Convenzione sulla Sicurezza e la Salute dei Lavoratori. n.155. 1981. Available online: https://www.ilo.org/it/resource/c155-convenzione-sulla-salute-e-sicurezza-sul-lavoro-1981 (accessed on 30 July 2025).
- European Union. Council Directive 98/24/EC of 7 April 1998 on the protection of the health and safety of workers from the risks related to chemical agents at work. Off. J. Eur. Union 1998, L 131, 11–23. Available online: http://data.europa.eu/eli/dir/1998/24/oj (accessed on 30 July 2025).
- European Union. Corrigendum to Directive 2004/37/EC of the European Parliament and of the Council of 29 April 2004 on the protection of workers from the risks related to exposure to carcinogens or mutagens at work. Off. J. Eur. Union 2004, L 158, 50–76. Available online: http://data.europa.eu/eli/dir/2004/37/corrigendum/2004-06-29/oj (accessed on 30 July 2025).
- Occupational Safety and Health Administration (OSHA). Particulates Not Otherwise Regulated Total and Respirable Dust. 2015. Available online: https://www.osha.gov/chemicaldata/801 (accessed on 30 July 2025).
- Occupational Safety and Health Administration (OSHA). Part 1910–Occupational Safety and Health Standards. U.S. Department of Labor. n. 29 CFR. 1974. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910 (accessed on 30 July 2025).
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Van Der Gon, H.D.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef]
- Yu, W.; Xu, R.; Ye, T.; Abramson, M.J.; Morawska, L.; Jalaludin, B.; Johnston, F.H.; Henderson, S.B.; Knibbs, L.D.; Morgan, G.G.; et al. Estimates of global mortality burden associated with short-term exposure to fine particulate matter (PM2.5). Lancet Planet. Health 2024, 8, e146–e155. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Ambient (Outdoor) Air Pollution. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 30 July 2025).
- Tsai, T.-L.; Lin, Y.-T.; Hwang, B.-F.; Nakayama, S.F.; Tsai, C.-H.; Sun, X.-L.; Ma, C.; Jung, C.-R. Fine particulate matter is a potential determinant of Alzheimer’s disease: A systemic review and meta-analysis. Environ. Res. 2019, 177, 108638. [Google Scholar] [CrossRef]
- Peters, R.; Mudway, I.; Booth, A.; Peters, J.; Anstey, K.J. Putting Fine Particulate Matter and Dementia in the Wider Context of Noncommunicable Disease: Where are We Now and What Should We Do Next: A Systematic Review. Neuroepidemiology 2021, 55, 253–265. [Google Scholar] [CrossRef]
- International Labour Organization (OIL). Exposure to Hazardous Chemicals at Work and Resulting Health Impacts: A Global Review. International, 1st ed.; OIL: Geneva, Switzerland, 2021; ISBN 978-9-22-034219-0. Available online: https://www.ilo.org/sites/default/files/2024-07/wcms_811455%20(4).pdf (accessed on 30 July 2025).
- Cork, M.; Mork, D.; Dominici, F. Methods for Estimating the Exposure-Response Curve to Inform the New Safety Standards for Fine Particulate Matter. J. R. Stat. Soc. Ser. A 2025, qnaf004. [Google Scholar] [CrossRef]
- Josey, K.P.; Desouza, P.; Wu, X.; Braun, D.; Nethery, R. Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality. J. Agric. Biol. Environ. Stat. 2023, 28, 20–41. [Google Scholar] [CrossRef]
- World Health Organization (OMS). First Global Conference on Air Pollution and Health, Geneva, Switzerland. Available online: https://www.who.int/news-room/events/detail/2018/10/30/default-calendar/air-pollution-conference (accessed on 30 July 2025).
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Effects of Agriculture upon the Air Quality and Climate: Research, Policy, and Regulations. Environ. Sci. Technol. 2009, 43, 4234–4240. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Toxicity of airborne particles—Established evidence, knowledge gaps and emerging areas of importance. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190322. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Sicard, P.; Taiwo, A.M.; De Marco, A.; Esmaeili, S.; Rashidi, R. Modeling of particulate matter dispersion from a cement plant: Upwind-downwind case study. J. Environ. Chem. Eng. 2018, 6, 3104–3110. [Google Scholar] [CrossRef]
- Argyropoulos, C.D.; Hassan, H.; Kumar, P.; Kakosimos, K.E. Measurements and modelling of particulate matter building ingress during a severe dust storm event. Build. Environ. 2020, 167, 106441. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Donaldson, K.; MacNee, W. Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int. J. Hyg. Environ. Health 2001, 203, 411–415. [Google Scholar] [CrossRef]
- Costabile, F.; Gualtieri, M.; Rinaldi, M.; Canepari, S.; Vecchi, R.; Massimi, L.; Di Iulio, G.; Paglione, M.; Di Liberto, L.; Corsini, E.; et al. Exposure to urban nanoparticles at low PM 1 concentrations as a source of oxidative stress and inflammation. Sci. Rep. 2023, 13, 18616. [Google Scholar] [CrossRef]
- Desikan, A.; Crichton, S.; Hoang, U.; Barratt, B.; Beevers, S.D.; Kelly, F.J.; Wolfe, C.D. Effect of Exhaust- and Nonexhaust-Related Components of Particulate Matter on Long-Term Survival After Stroke. Stroke 2016, 47, 2916–2922. [Google Scholar] [CrossRef]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Outdoor Air Pollution–A Leading Environmental Cause of Cancer Deaths. Press Release No. 221; World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (accessed on 30 July 2025).
- Dominici, F.; Sheppard, L.; Clyde, M. Health Effects of Air Pollution: A Statistical Review. Int. Stat. Rev. 2003, 71, 243–276. [Google Scholar] [CrossRef]
- Martic, I.; Jansen-Dürr, P.; Cavinato, M. Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022, 11, 2220. [Google Scholar] [CrossRef]
- Kim, K.E.; Cho, D.; Park, H.J. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016, 152, 126–134. [Google Scholar] [CrossRef]
- Krutmann, J.; Liu, W.; Li, L.; Pan, X.; Crawford, M.; Sore, G.; Seite, S. Pollution and skin: From epidemiological and mechanistic studies to clinical implications. J. Dermatol. Sci. 2014, 76, 163–168. [Google Scholar] [CrossRef]
- Hieda, D.S.; da Costa Carvalho, L.A.; de Mello, B.V.; de Oliveira, E.A.; de Assis, S.R.; Wu, J.; Du-Thumm, L.; da Silva, C.L.V.; Roubicek, D.A.; Maria-Engler, S.S.; et al. Air Particulate Matter Induces Skin Barrier Dysfunction and Water Transport Alteration on a Reconstructed Human Epidermis Model. J. Investig. Dermatol. 2020, 140, 2343–2352.e3. [Google Scholar] [CrossRef]
- Kappos, A.D.; Bruckmann, P.; Eikmann, T.; Englert, N.; Heinrich, U.; Höppe, P.; Koch, E.; Krause, G.H.; Kreyling, W.G.; Rauchfuss, K.; et al. Health effects of particles in ambient air. Int. J. Hyg. Environ. Health 2004, 207, 399–407. [Google Scholar] [CrossRef]
- Versura, P.; Profazio, V.; Cellini, M.; Torreggiani, A.; Caramazza, R. Eye Discomfort and Air Pollution. Ophthalmologica 1999, 213, 103–109. [Google Scholar] [CrossRef]
- Saxena, R.; Srivastava, S.; Trivedi, D.; Anand, E.; Joshi, S.; Gupta, S.K. Impact of environmental pollution on the eye. Acta Ophthalmol. Scand. 2003, 81, 491–494. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chiu, C.-C.; Lee, P.-Y.; Chen, K.-J.; He, C.-X.; Hsu, S.-K.; Cheng, K.-C. The Adverse Effects of Air Pollution on the Eye: A Review. Int. J. Environ. Res. Public Health 2022, 19, 1186. [Google Scholar] [CrossRef]
- Tiwari, S.; Agrawal, M.; Marshall, F.M. Evaluation of Ambient Air Pollution Impact on Carrot Plants at a Sub Urban Site Using Open Top Chambers. Environ. Monit. Assess. 2006, 119, 15–30. [Google Scholar] [CrossRef]
- Alloway, B.J. (Ed.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer Science & Business Media: Berlin/Heidelberg, Germany; Volume 22. [CrossRef]
- Change, I.P.O.C. Climate change 2007: The physical science basis. Agenda 2007, 6, 333. Available online: https://www.slvwd.com/sites/g/files/vyhlif1176/f/uploads/item_10b_4.pdf (accessed on 30 July 2025).
- Kumar, P.; Omidvarborna, H.; Barwise, Y.; Tiwari, A. Mitigating Exposure to Traffic Pollution in and Around Schools: Guidance for Children, Schools and Local Communities; University of Surrey: Guildford, UK, 2020; 24p. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef]
- Krahner, A.; Heimbach, U.; Stähler, M.; Bischoff, G.; Pistorius, J. Deposition of dust with active substances in pesticides from treated seeds in adjacent fields during drilling: Disentangling the effects of various factors using an 8-year field experiment. Environ. Sci. Pollut. Res. 2021, 28, 66613–66627. [Google Scholar] [CrossRef]
- Biocca, M.; Pochi, D.; Imperi, G.; Gallo, P. Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel. Agriengineering 2024, 6, 228–239. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Weyrich, A.; Joel, M.; Lewin, G.; Hofmann, T.; Frericks, M. Review of the state of science and evaluation of currently available in silico prediction models for reproductive and developmental toxicity: A case study on pesticides. Birth Defects Res. 2022, 114, 812–842. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Zhang, S.; Zhang, X.; Zhao, H. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China. J. Environ. Sci. 2017, 57, 15–23. [Google Scholar] [CrossRef]
- Jia, L.; Zhou, X.; Wang, Q. Effects of Agricultural Machinery Operations on PM2.5, PM10 and TSP in Farmland Under Different Tillage Patterns. Agriculture 2023, 13, 930. [Google Scholar] [CrossRef]
- Madden, N.; Southard, R.; Mitchell, J. Conservation tillage reduces PM10 emissions in dairy forage rotations. Atmos. Environ. 2008, 42, 3795–3808. [Google Scholar] [CrossRef]
- Bavin, T.; Griffis, T.; Baker, J.; Venterea, R. Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agric. Ecosyst. Environ. 2009, 134, 234–242. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Sci. Total. Environ. 2020, 716, 136517. [Google Scholar] [CrossRef]
- Chandra, B.; Sinha, V. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide. Environ. Int. 2016, 88, 187–197. [Google Scholar] [CrossRef]
- Kanageswari, S.V.; Tabil, L.G.; Sokhansanj, S. Dust and Particulate Matter Generated during Handling and Pelletization of Herbaceous Biomass: A Review. Energies 2022, 15, 2634. [Google Scholar] [CrossRef]
- Singh, P.; Sharratt, B.; Schillinger, W.F. Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil Tillage Res. 2012, 124, 219–225. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Dan, M.; Zhang, S.; Zhang, X.; Pan, Y. Typical atmospheric haze during crop harvest season in northeastern China: A case in the Changchun region. J. Environ. Sci. 2017, 54, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, W.B. Harvesting equipment to reduce particulate matter emissions from almond harvest. J. Air Waste Manag. Assoc. 2012, 63, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, L.B.; Faulkner, W.B.; Capareda, S.C.; Krauter, C.; Parnell, C.B. Particulate Matter Emissions from Reduced-Pass Almond Sweeping. Trans. ASABE 2009, 52, 1669–1675. [Google Scholar] [CrossRef]
- Mitchell, D. Air quality on biomass harvesting operations. In Proceedings of the 34th Council on Forest Engineering Annual Meeting; Quebec City, QC, Canada, 12–15 June 2011, pp. 1–9. Available online: https://research.fs.usda.gov/treesearch/39445 (accessed on 30 July 2025).
- Fedrizzi, M.; Pagano, M.; Perrino, C.; Cecchini, M.; Guerrieri, M.; Gallo, P.; Biocca, M. Inhalable dust emission in the mechanical harvesting of hazelnuts: First comparative test. In Proceedings of the International Conference of Agricultural Engineering, CIGR-AgEng 2012, Valencia, Spain, 8–12 July 2012; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20133223129 (accessed on 30 July 2025).
- Tatarko, J.; Kucharski, M.; Li, H.; Li, H. PM2.5 and PM10 emissions by abrasion of agricultural soils. Soil Tillage Res. 2020, 200, 104601. [Google Scholar] [CrossRef]
- Bonsignore, R.; Romano, E.; Caruso, L.; Schillaci, G. Wood dust production and VOC (Volatile Organic Compound) emissions during mechanical pre-pruning in vineyards. In Proceedings of the International Conference Ragusa SHWA2010, Ragusa Ibla, Italy, 16–18 September 2010; Available online: https://www.ragusashwa.it/CD_2010/lavori/TOPIC3/poster/DIAMeccDust.pdf (accessed on 30 July 2025).
- Katra, I. Soil Erosion by Wind and Dust Emission in Semi-Arid Soils Due to Agricultural Activities. Agronomy 2020, 10, 89. [Google Scholar] [CrossRef]
- Madden, N.M.; Southard, R.J.; Mitchell, J.P. Soil water and particle size distribution influence laboratory-generated PM10. Atmos. Environ. 2010, 44, 745–752. [Google Scholar] [CrossRef]
- Wang, J.; Miller, D.R.; Sammis, T.W.; Hiscox, A.L.; Yang, W.; Holmén, B.A. Local Dust Emission Factors for Agricultural Tilling Operations. Soil Sci. 2010, 175, 194–200. [Google Scholar] [CrossRef]
- Gherboudj, I.; Beegum, S.N.; Marticorena, B.; Ghedira, H. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture. J. Geophys. Res. Atmos. 2015, 120, 10915–10938. [Google Scholar] [CrossRef]
- Funk, R.; Reuter, H.I.; Hoffmann, C.; Engel, W.; Öttl, D. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Process. Landf. 2008, 33, 1851–1863. [Google Scholar] [CrossRef]
- Madden, N.M.; Southard, R.J.; Mitchell, J.P. Soil Water Content and Soil Disaggregation by Disking Affects PM10 Emissions. J. Environ. Qual. 2009, 38, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.Q.; Gill, T.E.; Sprigg, W.A.; Van Pelt, R.S.; Baklanov, A.A.; Barker, B.M.; Bell, J.E.; Castillo, J.; Gassó, S.; Gaston, C.J.; et al. Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond. Rev. Geophys. 2023, 61, e2021RG000763. [Google Scholar] [CrossRef]
- Gomes, L.; Rajot, J.; Alfaro, S.; Gaudichet, A. Validation of a dust production model from measurements performed in semi-arid agricultural areas of Spain and Niger. CATENA 2003, 52, 257–271. [Google Scholar] [CrossRef]
- Münch, S.; Papke, N.; Thiel, N.; Nübel, U.; Siller, P.; Roesler, U.; Biniasch, O.; Funk, R.; Amon, T. Effects of farmyard manure application on dust emissions from arable soils. Atmospheric Pollut. Res. 2020, 11, 1610–1624. [Google Scholar] [CrossRef]
- Saxton, K.; Chandler, D.; Stetler, L.; Lamb, B.; Claiborn, C.; Lee, B.-H. Wind erosion and fugitive dust fluxes on agricultural lands in the pacific northwest. Trans. ASAE 2000, 43, 631–640. [Google Scholar] [CrossRef]
- Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The effects of wind erosion depending on cropping system and tillage method in a semi-arid region. Agronomy 2020, 10, 732. [Google Scholar] [CrossRef]
- Maffia, J.; Balsari, P.; Padoan, E.; Ajmone-Marsan, F.; Aimonino, D.R.; Dinuccio, E. Evaluation of particulate matter (PM10) emissions and its chemical characteristics during rotary harrowing operations at different forward speeds and levelling bar heights. Environ. Pollut. 2020, 265, 115041. [Google Scholar] [CrossRef]
- Nuyttens, D.; Devarrewaere, W.; Verboven, P.; Foqué, D. Pesticide-laden dust emission and drift from treated seeds during seed drilling: A review. Pest Manag. Sci. 2013, 69, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Devarrewaere, W.; Foqué, D.; Verboven, P.; Nuyttens, D.; Nicolaï, B. Modelling dust distribution from static pneumatic sowing machines. In Aspects of Applied Biology: International Advances in Pesticide Application; Association of Applied Biologists: Wellesbourne, UK, 2014; pp. 95–101. [Google Scholar]
- Schaafsma, A.W.; Limay-Rios, V.; Forero, L.G. The role of field dust in pesticide drift when pesticide-treated maize seeds are planted with vacuum-type planters. Pest Manag. Sci. 2018, 74, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Nuyttens, D.; Godaert, R.; Adamu, M.A.; Jones, N.; Chapple, A.C.; Jene, B.; Sornin, B.; Verboven, P. A combined experimental and modelling study of dust drift during wheat sowing. In International Advances in Pesticide Application: Aspects of Applied Biology; Association of Applied Biologists: Wellesbourne, UK, 2022; pp. 297–306. [Google Scholar]
- De-Assis, M.P.; Barcella, R.C.; Padilha, J.C.; Pohl, H.H.; Krug, S.B.F. Health problems in agricultural workers occupationally exposed to pesticides. Rev. Bras. Med. Trab. 2021, 18, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Dhananjayan, V.; Ravichandran, B. Occupational health risk of farmers exposed to pesticides in agricultural activities. Curr. Opin. Environ. Sci. Health 2018, 4, 31–37. [Google Scholar] [CrossRef]
- Cheng, S.H. Quantification of Neonicotinoid Residues in Soils and Dust Drift in Conservation Reserve Program Fields in Illinois, USA. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2021. Available online: http://hdl.handle.net/2142/113204 (accessed on 30 July 2025).
- Singla, A.; Barmota, H.; Sahoo, S.K.; Kang, B.K. Influence of neonicotinoids on pollinators: A review. J. Apic. Res. 2021, 60, 19–32. [Google Scholar] [CrossRef]
- Tapparo, A.; Marton, D.; Giorio, C.; Zanella, A.; Soldà, L.; Marzaro, M.; Vivan, L.; Girolami, V. Assessment of the Environmental Exposure of Honeybees to Particulate Matter Containing Neonicotinoid Insecticides Coming from Corn Coated Seeds. Environ. Sci. Technol. 2012, 46, 2592–2599. [Google Scholar] [CrossRef]
- Pochi, D.; Biocca, M.; Fanigliulo, R.; Pulcini, P.; Conte, E. Potential Exposure of Bees, Apis mellifera L., to Particulate Matter and Pesticides Derived from Seed Dressing During Maize Sowing. Bull. Environ. Contam. Toxicol. 2012, 89, 354–361. [Google Scholar] [CrossRef]
- Lin, C.-H.; Sponsler, D.B.; Richardson, R.T.; Watters, H.D.; Glinski, D.A.; Henderson, W.M.; Minucci, J.M.; Lee, E.H.; Purucker, S.T.; Johnson, R.M. Honey Bees and Neonicotinoid-Treated Corn Seed: Contamination, Exposure, and Effects. Environ. Toxicol. Chem. 2021, 40, 1212–1221. [Google Scholar] [CrossRef]
- Biocca, M.; Pochi, D.; Fanigliulo, R.; Gallo, P. Dust Emissions During the Sowing of Maize Dressed Seeds and Drift Reducing Devices. Open Agric. J. 2015, 9, 42–47. [Google Scholar] [CrossRef]
- Abrol, D.P. Neonicotinoids-environmental risk assessment to natural Enemies and Pollinators. J. Palynol. 2022, 58, 23–62. [Google Scholar]
- Pochi, D.; Biocca, M.; Fanigliulo, R.; Gallo, P.; Pulcini, P. Sowing of seed dressed with thiacloprid using a pneumatic drill modified for reducing abrasion dust emissions. Bull. Insectology 2015, 68, 273–279. [Google Scholar]
- PPDB. Pesticide Properties DataBase. University of Hertfordshire, UK. Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/ (accessed on 30 July 2025).
- Foqué, D.; Beck, B.; Devarrewaere, W.; Verboven, P.; Nuyttens, D. Comparing different techniques to assess the risk of dust drift from pesticide-coated seeds. Pest Manag. Sci. 2017, 73, 1908–1920. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Coscollà, C.; Castillo, M.; Pastor, A.; Yusà, V. Determination of 40 currently used pesticides in airborne particulate matter (PM10) by microwave-assisted extraction and gas chromatography coupled to triple quadrupole mass spectrometry. Anal. Chim. Acta 2011, 693, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Harnly, M.E.; Bradman, A.; Nishioka, M.; McKone, T.E.; Smith, D.; McLaughlin, R.; Kavanagh-Baird, G.; Castorina, R.; Eskenazi, B. Pesticides in Dust from Homes in an Agricultural Area. Environ. Sci. Technol. 2009, 43, 8767–8774. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.; Magnanti, B.L.; Carreira, S.C.; Yang, A.; Alamo-Hernández, U.; Riojas-Rodriguez, H.; Calamandrei, G.; Koppe, J.G.; von Krauss, M.K.; Keune, H.; et al. Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy. Environ. Health 2012, 11, S5. [Google Scholar] [CrossRef]
- Das, S.; Hageman, K.J.; Taylor, M.; Michelsen-Heath, S.; Stewart, I. Fate of the organophosphate insecticide, chlorpyrifos, in leaves, soil, and air following application. Chemosphere 2020, 243, 125194. [Google Scholar] [CrossRef]
- Thompson, D.A.; Lehmler, H.J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; LeFevre, G.H.; Peeples, T.L.; Poch, M.C.; LaDuca, L.E.; et al. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environ. Sci. Process. Impacts 2020, 22, 1315–1346. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Santovito, A.; Cervella, P.; Delpero, M. In vitro aneugenic effects of the fungicide thiabendazole evaluated in human lymphocytes by the micronucleus assay. Arch. Toxicol. 2011, 85, 689–693. [Google Scholar] [CrossRef]
- Clark, R.D. Predicting mammalian metabolism and toxicity of pesticides in silico. Pest Manag. Sci. 2018, 74, 1992–2003. [Google Scholar] [CrossRef]
- Caserta, D.; Mantovani, A.; Marci, R.; Fazi, A.; Ciardo, F.; La Rocca, C.; Maranghi, F.; Moscarini, M. Environment and women’s reproductive health. Hum. Reprod. Update 2011, 17, 418–433. [Google Scholar] [CrossRef]
- Mendola, P.; Messer, L.C.; Rappazzo, K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil. Steril. 2008, 89, e81–e94. [Google Scholar] [CrossRef]
- Sifakis, S.; Tsatsakis, A.; Mparmpas, M.; Soldin, O.P. Pesticide Exposure and Health Related Issues in Male and Female Reproductive System; InTech Open: London, UK, 2011. [Google Scholar]
- Kumar, S.; Sharma, A.; Kshetrimayum, C. Environmental & occupational exposure & female reproductive dysfunction. Indian J. Med. Res. 2019, 150, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Garry, V.F.; Harkins, M.; Lyubimov, A.; Erickson, L.; Long, L. Reproductive outcomes in the women of the red river valley of the north. I. The spouses of pesticide applicators: Pregnancy loss, age at menarche, and exposures to pesticides. J. Toxicol. Environ. Health Part A 2002, 65, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Fucic, A.; Duca, R.C.; Galea, K.S.; Maric, T.; Garcia, K.; Bloom, M.S.; Andersen, H.R.; Vena, J.E. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 6576. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Bloomfield, J.; Williams, R.; Gooddy, D.; Cape, J.; Guha, P. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—A UK perspective. Sci. Total. Environ. 2006, 369, 163–177. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insects pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature review: Impact of climate change on pesticide use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Yadav, S.K. Pesticide Applications-Threat to Ecosystems. J. Hum. Ecol. 2010, 32, 37–45. [Google Scholar] [CrossRef]
- Farha, W.; El-Aty, A.M.A.; Rahman, M.; Shin, H.-C.; Shim, J.-H. An overview on common aspects influencing the dissipation pattern of pesticides: A review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef] [PubMed]
- Maffia, J.; Dinuccio, E.; Amon, B.; Balsari, P. PM emissions from open field crop management: Emission factors, assessment methods and mitigation measures–A review. Atmospheric Environ. 2020, 226, 117381. [Google Scholar] [CrossRef]
- Borghi, F.; Spinazzè, A.; De Nardis, N.; Straccini, S.; Rovelli, S.; Fanti, G.; Oxoli, D.; Cattaneo, A.; Cavallo, D.M.; Brovelli, M. A Studies on air pollution and air quality in rural and agricultural environments: A systematic review. Environments 2023, 10, 208. [Google Scholar] [CrossRef]
- Mullins, G.L.; Alley, M.M.; Phillips, S.B.; Maguire, R.O. Sources of Lime for Acid Soils in Virginia; Virginia Cooperative Extension, Virginia Tech: Blacksburg, VA, USA, 2019; Available online: https://www.pubs.ext.vt.edu/452/452-510/452-510.html (accessed on 30 July 2025).
- Kabelitz, T.; Biniasch, O.; Ammon, C.; Nübel, U.; Thiel, N.; Janke, D.; Swaminathan, S.; Funk, R.; Münch, S.; Rösler, U.; et al. Particulate matter emissions during field application of poultry manure–The influence of moisture content and treatment. Sci. Total. Environ. 2021, 780, 146652. [Google Scholar] [CrossRef]
- Baghdadi, M.; Brassard, P.; Godbout, S.; Létourneau, V.; Turgeon, N.; Rossi, F.; Lachance, É.; Veillette, M.; Gaucher, M.-L.; Duchaine, C. Contribution of Manure-Spreading Operations to Bioaerosols and Antibiotic Resistance Genes’ Emission. Microorganisms 2023, 11, 1797. [Google Scholar] [CrossRef]
- Thiel, N.; Münch, S.; Behrens, W.; Junker, V.; Faust, M.; Biniasch, O.; Kabelitz, T.; Siller, P.; Boedeker, C.; Schumann, P.; et al. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb. Biotechnol. 2020, 13, 1631–1647. [Google Scholar] [CrossRef]
- Knecht, H.; Balanay, J.A.G.; Langley, R.; Marcom, R.T.; Richards, S.L. Systematic Review of Biological, Chemical, Ergonomic, Physical, and Psychosocial Hazards Impacting Occupational Health of United States Forestry Workers. J. For. 2024, 122, 159–170. [Google Scholar] [CrossRef]
- Wang, H.-M.; Wang, H.-B.; Cai, Y.-T.; Cui, Y.-Q.; Zhu, N.-F. Effect of Moisture Content on Mass Concentration and Particle Size Distribution of Milling Wood Dust. China For. Prod. Ind. 2021, 58, 1. [Google Scholar] [CrossRef]
- Kminiak, R.; Kučerka, M.; Kristak, L.; Reh, R.; Antov, P.; Očkajová, A.; Rogoziński, T.; Pędzik, M. Granulometric Characterization of Wood Dust Emission from CNC Machining of Natural Wood and Medium Density Fiberboard. Forests 2021, 12, 1039. [Google Scholar] [CrossRef]
- Fujimoto, K.; Takano, T.; Okumura, S. Difference in mass concentration of airborne dust during circular sawing of five wood-based materials. J. Wood Sci. 2011, 57, 149–154. [Google Scholar] [CrossRef]
- Očkajová, A.; Kučerka, M.; Banski, A.; Rogoziński, T. Factors affecting the granularity of wood dust particles. Chip Chipless Woodwork. Process. 2016, 10, 137–144. [Google Scholar]
- Demers, P.A.; Teschke, K.; Kennedy, S.M. What to do about softwood? A review of respiratory effects and recommendations regarding exposure limits. Am. J. Ind. Med. 1997, 31, 385–398. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Arsenic, Metals, Fibres, and Dusts. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2012; Volume 100C, ISBN 13 978-92-832-1320-8. [Google Scholar]
- Occupational Safety and Health Administration (OSHA). Wood Dust; U.S. Department of Labor: Washington, DC, USA, 1989. Available online: https://www.osha.gov/wood-dust (accessed on 30 July 2025).
- American Conference of Governmental Industrial Hygienists (ACGIH). TLVs and BEIs: Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2024; ISBN 0-936712-51-1. [Google Scholar]
- Puntarić, D.; Kos, A.; Smit, Z.; Zecić, Z.; Sega, K.; Beljo-Lucić, R.; Horvat, D.; Bosnir, J. Wood dust exposure in wood industry and forestry. Coll. Antropol. 2005, 29, 207–211. [Google Scholar]
- Kauppinen, T.; Vincent, R.; Liukkonen, T.; Grzebyk, M.; Kauppinen, A.; Welling, I.; Arezes, P.; Black, N.; Bochmann, F.; Campelo, F.; et al. Occupational Exposure to Inhalable Wood Dust in the Member States of the European Union. Ann. Occup. Hyg. 2006, 50, 549–561. [Google Scholar] [CrossRef]
- Çakıroğlu, E.O.; Demirarslan, K.O.; Taşdemir, T. Characterization of wood dust emission according to some wood species in 3D machining applied with CNC machine. Eur. J. Wood Wood Prod. 2025, 83, 59. [Google Scholar] [CrossRef]
- Pylkkänen, L.; Stockmann-Juvala, H.; Alenius, H.; Husgafvel-Pursiainen, K.; Savolainen, K. Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells. Toxicology 2009, 262, 265–270. [Google Scholar] [CrossRef]
- Biocca, M.; Gallo, P.; Fanigliulo, R.; Carnevale, M.; Vincenti, B.; Palma, A.; Gallucci, F.; Paris, E.; Fornaciari, L.; Grilli, R.; et al. Inhalable Wood Dust Produced During Chainsaw Operations. Lecture Notes in Civil Engineering. In Proceedings of the VII International Conference on Safety, Health and Welfare in Agriculture and Agro-Food Systems RAGUSA SHWA, Ragusa Ibla, Italy, 6–9 September 2023; Volume 521, pp. 3–11. [Google Scholar] [CrossRef]
- Gallo, P.; Failla, S.; Biocca, M.; Paris, E.; Gallucci, F.; Fornaciari, L.; Schillaci, G. Exposure to heavy metals in wood dust during dry-pruning in vineyard. In Proceedings of the International Conference on Safety, Health and Welfare in Agriculture and Agro-Food Systems, Ragusa, Italy, 16–19 September 2020; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Dimou, V.; Tioutiountzi, T.; Kitikidou, K. Influence of saw chain type and wood species on the concentration of wood dust in a forestry operation. J. Occup. Environ. Hyg. 2024, 21, 638–646. [Google Scholar] [CrossRef]
- Dado, M.; Kučera, M.; Salva, J.; Hnilica, R.; Hýrošová, T. Influence of Saw Chain Type and Wood Species on the Mass Concentration of Airborne Wood Dust During Cross-Cutting. Forests 2022, 13, 2009. [Google Scholar] [CrossRef]
- Bianchini, L.; Scutaru, D.; Riccione, S.; Picchio, R.; Biocca, M.; Gallo, P.; Pochi, D.; Colantoni, A.; Monarca, D.; Cecchini, M. Chainsaw, performance, efficiency, and safety related to chain types and cutting profiles: A comparative study. In Proceedings of the 57th International Symposium of Forest Mechanization (FORMEC), Joensuu, Finland, 9–13 June 2025, ISSN 2954-1956. [Google Scholar]
- Dimou, V.; Tioutiountzi, T.; Malesios, C. Determining occupational exposure to inhalable wood dust in forestry operation. ResearchSquare 2023. [Google Scholar] [CrossRef]
- Biocca, M.; Pochi, D.; Gallo, P.; Fanigliulo, R. Air-Borne Particle Size Distribution of Wood Dust Emitted During Small Scale Forestry Operations. J. Basic Appl. Sci. 2023, 19, 60–67. [Google Scholar] [CrossRef]
- Hooper, B.; Parker, R.; Todoroki, C. Exploring chainsaw operator occupational exposure to carbon monoxide in forestry. J. Occup. Environ. Hyg. 2017, 14, D1–D12. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, R.; Nilsson, C.; Andersson, K.; Andersson, B.; Rannug, U.; Östman, C. Effect of Gasoline and Lubricant on Emissions and Mutagenicity of Particles and Semivolatiles in Chain Saw Exhaust. Environ. Sci. Technol. 2000, 34, 2918–2924. [Google Scholar] [CrossRef]
- Skoupý, A.; Pechlak, B.; Sejkora, P. A contribution to understanding of oil dispersion at the work with a chain saw by means of the radiotracer method. Lesnictví 1990, 36, 937–946. [Google Scholar]
- Webb, E.; Bushkin-Bedient, S.; Cheng, A.; Kassotis, C.D.; Balise, V.; Nagel, S.C. Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Rev. Environ. Health 2014, 29, 307–318. [Google Scholar] [CrossRef]
- Dimou, V.; Kantartzis, A.; Malesios, C.; Kasampalis, E. Research of exhaust emissions by chainsaws with the use of a portable emission measurement system. Int. J. For. Eng. 2019, 30, 228–239. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Bondioli, P.; Biocca, M.; Grilli, R.; Gallo, P.; Fornaciari, L.; Folegatti, L.; Benigni, S.; Calderari, I.; Gallucci, F.; et al. Olive Pomace Oil as a Chainsaw Lubricant: First Results of Tests on Performance and Safety Aspects. Lubricants 2023, 11, 494. [Google Scholar] [CrossRef]
- Marchi, E.; Neri, F.; Cambi, M.; Laschi, A.; Foderi, C.; Sciarra, G.; Fabiano, F. Analysis of dust exposure during chainsaw forest operations. Iforest-Biogeosciences For. 2017, 10, 341–347. [Google Scholar] [CrossRef]
- Dimou, V.; Malesios, C.; Chatzikosti, V. Assessing chainsaw operators’ exposure to wood dust during timber harvesting. SN Appl. Sci. 2020, 2, 1899. [Google Scholar] [CrossRef]
- Fornaciari, L.; Fanigliulo, R.; Sperandio, G.; Biocca, M.; Grilli, R.; Gallo, P.; Pochi, D. Noise, vibration and dust emissions of a forestry chipper. In Proceedings of the International Conference Ragusa SHWA Safety Health and Welfare in Agriculture Agro-Food and Forestry Systems, Lodi, Italy, 8–11 September 2015; Failla, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 99–106, ISBN 978-88-941207-0-7. [Google Scholar]
- Magagnotti, N.; Nannicini, C.; Sciarra, G.; Spinelli, R.; Volpi, D. Determining the Exposure of Chipper Operators to Inhalable Wood Dust. Ann. Work. Expo. Health 2013, 57, 784–792. [Google Scholar] [CrossRef]
- Omigie, M.; Iyawe, V.; Aihie, E. Effect of Environmental Dust Pollution (Particulate Matter of Sawdust) on the Histology of the Lungs and Hematological Parameters of Adult Wistar Rats. Newport Int. J. Res. Med. Sci. 2024, 5, 34–47. [Google Scholar] [CrossRef]
- Gulci, S.; Akay, A.E.; Spinelli, R.; Magagnotti, N. Assessing the exposure of chipper operators to wood dust in a roadside landing area. Fresenius Environ. Bull. 2018, 27, 4132–4138. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20183386813 (accessed on 30 July 2025).
- Barontini, M.; Crognale, S.; Scarfone, A.; Gallo, P.; Gallucci, F.; Petruccioli, M.; Pesciaroli, L.; Pari, L. Airborne fungi in biofuel wood chip storage sites. Int. Biodeterior. Biodegrad. 2014, 90, 17–22. [Google Scholar] [CrossRef]
- Miller, T.; Mikiciuk, G.; Durlik, I.; Mikiciuk, M.; Łobodzińska, A.; Śnieg, M. The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies. Sensors 2025, 25, 3583. [Google Scholar] [CrossRef]
- De Vito, S.; D’Elia, G.; Ferlito, S.; Di Francia, G.; Davidović, M.D.; Kleut, D.; Stojanović, D.; Jovaševic-Stojanović, M. A Global Multiunit Calibration as a Method for Large-Scale IoT Particulate Matter Monitoring Systems Deployments. IEEE Trans. Instrum. Meas. 2023, 73, 2501916. [Google Scholar] [CrossRef]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamäki, K.; Nurmi, P.; Tarkoma, S. Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis. ACM Trans. Sens. Netw. (TOSN) 2021, 17, 1–44. [Google Scholar] [CrossRef]
- INAIL; CNR. Worklimate 2.0–Heat Stress Risk Warning Systems for Outdoor Workers; National Institute for Insurance Against Accidents at Work: Rome, Italy, 2023; Available online: https://www.worklimate.it (accessed on 30 July 2025).
- VIDIS Project. Visualising the Invisible: Development and Deployment of Low-Cost Sensor Networks for Air Quality Monitoring. European Commission. 2020–2024. Available online: https://cordis.europa.eu/project/id/870276 (accessed on 30 July 2025).
- European Commission. Horizon Europe Work Programme 2023–2025: Cluster 6–Food, Bioeconomy, Natural Resources, Agriculture and Environment. Brussels. 2023. Available online: https://www.euro-access.eu/en/programs/149/Horizon-Europe-Cluster-6-Food-Bioeconomy-Natural-Resources-Agriculture-and-Environment (accessed on 30 July 2025).
- European Commission. The European Green Deal. Brussels. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640 (accessed on 30 July 2025).
- European Commission. Zero Pollution Action Plan for Air, Water and Soil. Brussels: Directorate-General for Environment. 2021. Available online: https://environment.ec.europa.eu/zero-pollution (accessed on 30 July 2025).
- Riechelmann, H. Cellular and molecular mechanisms in environmental and occupational inhalation toxicology. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2004, 3, Doc02. [Google Scholar]
- Poole, J.A.; Romberger, D.J. Immunological and inflammatory responses to organic dust in agriculture. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 126–132. [Google Scholar] [CrossRef]
- Huy, T.; De Schipper, K.; Chan-Yeung, M.; Kennedy, S.M. Grain Dust and Lung function: Dose-response Relationships. Am. Rev. Respir. Dis. 1991, 144, 1314–1321. [Google Scholar] [CrossRef]
- Beaudor, M.; Hauglustaine, D.; Lathière, J.; Van Damme, M.; Clarisse, L.; Vuichard, N. Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate. EGUsphere 2024, 2024, 1–40. [Google Scholar] [CrossRef]
- Bhattarai, H.; Tai, A.P.; Martin, M.V.; Yung, D.H. Responses of fine particulate matter (PM2.5) air quality to future climate, land use, and emission changes: Insights from modeling across shared socioeconomic pathways. Sci. Total. Environ. 2024, 948, 174611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scutaru, D.; Pochi, D.; Cecchini, M.; Biocca, M. Exposure of Agroforestry Workers to Airborne Particulate Matter and Implications Under Climate Change: A Review. AgriEngineering 2025, 7, 293. https://doi.org/10.3390/agriengineering7090293
Scutaru D, Pochi D, Cecchini M, Biocca M. Exposure of Agroforestry Workers to Airborne Particulate Matter and Implications Under Climate Change: A Review. AgriEngineering. 2025; 7(9):293. https://doi.org/10.3390/agriengineering7090293
Chicago/Turabian StyleScutaru, Daniela, Daniele Pochi, Massimo Cecchini, and Marcello Biocca. 2025. "Exposure of Agroforestry Workers to Airborne Particulate Matter and Implications Under Climate Change: A Review" AgriEngineering 7, no. 9: 293. https://doi.org/10.3390/agriengineering7090293
APA StyleScutaru, D., Pochi, D., Cecchini, M., & Biocca, M. (2025). Exposure of Agroforestry Workers to Airborne Particulate Matter and Implications Under Climate Change: A Review. AgriEngineering, 7(9), 293. https://doi.org/10.3390/agriengineering7090293