Effect of Application Techniques on Spray Quality Optimization in Sweet Pepper Cultivation in Protected Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Area
2.2. Experimental Design and Treatments
2.3. Evaluation of the Leaf Area Index (LAI)
2.4. Evaluation of the Deposition and Losses to the Ground
2.5. Evaluation of Spray Coverage
2.6. Statistical Analysis
3. Results and Discussion
3.1. Spray Deposition in the 2019 Crop Season
3.2. Spray Deposition in the 2020 Crop Season
3.3. Spray Coverage in the 2019 and 2020 Crop Seasons
3.4. Spray Losses to the Ground
4. Conclusions
- The effects of different application treatments on spray deposition depend on factors such as sweet pepper plant height, canopy depth, and leaf surface characteristics.
- Hydraulic spraying with a variable spray rate, adjusted according to crop height (SFH), resulted in the highest spray deposition on the adaxial surface of sweet pepper leaves. In contrast, the pneumatic treatment with electrostatic charges (PAEA) achieved the greatest spray deposition on the abaxial leaf surface.
- The PAEA sprayer improved spray coverage on the abaxial surface of the external sweet pepper canopy but did not enhance coverage inside.
- Reducing the spray rate of the hydraulic sprayer by 50% compared to the SFH led to decreased spray deposition and coverage.
- Pneumatic sprayers, both with and without electrostatic charges (PPA and PAAE), decreased the spray volume lost to the ground.
- Future studies should investigate the effectiveness of pesticides on sweet peppers using the equipment employed in this research to evaluate their impact on biological targets.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SFH | Standard farmer hydraulics |
RVH | Reduced-volume hydraulics |
PAEA | Pneumatic with air and electrostatic assistance |
PAA | Pneumatic with air assistance |
References
- Llop, J.; Gil, E.; Gallart, M.; Contador, F.; Ercilla, M. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops. Pest Manag. Sci. 2015, 72, 505–516. [Google Scholar] [CrossRef]
- Krasnow, C.; Ziv, C. Non-chemical approaches to control postharvest gray mold disease in bell peppers. Agronomy 2022, 12, 216. [Google Scholar] [CrossRef]
- Santos, H.C.A.; Lima Junior, J.A.; Silva, A.L.P.; Castro, G.L.S.; Gomes, R.F. Yield of fertigated bell pepper under different soil water tensions and nitrogen fertilization. Rev. Caatinga 2020, 33, 172–183. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/pimentao/br (accessed on 28 April 2025).
- Nuyttens, D.; Windey, S.; Sonck, B.A.R.T. Comparison of operator exposure for five different greenhouse spraying applications. J. Agric. Saf. Health 2004, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- González, R.; Rodríguez, F.; Sánchez-Hermosilla, J.; Donaire, J.G. Navigation techniques for mobile robots in greenhouses. Appl. Eng. Agric. 2009, 25, 153–165. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Liu, Y.; Lv, X.; Zheng, W. Comparison of a new knapsack mist sprayer and three traditional sprayers for pesticide application in plastic tunnel greenhouse. Phytoparasitica 2021, 50, 177–190. [Google Scholar] [CrossRef]
- Cerruto, E.; Manetto, G.E.; Santoro, F.; Pascuzzi, S. Operator dermal exposure to pesticides in tomato and strawberry greenhouses from hand-held sprayers. Sustainability 2018, 10, 2273. [Google Scholar] [CrossRef]
- Rincón, V.J.; Páez, F.C.; Sánchez-Hermosilla, J. Potential dermal exposure to operators applying pesticide on greenhouse crops using low-cost equipment. Sci. Total Environ. 2018, 630, 1181–1187. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.C.; Pérez-Alonso, J.; Callejón-Ferre, Á.J. Evaluation of the effect of different hand-held sprayer types on a greenhouse pepper crop. Agriculture 2021, 11, 532. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Páez, F.; Rincón, V.J.; Callejón, Á.J. Evaluation of a fog cooling system for applying plant-protection products in a greenhouse tomato crop. Crop Prot. 2013, 48, 76–81. [Google Scholar] [CrossRef]
- Rincón, V.J.; Sánchez-Hermosilla, J.; Páez, F.; Pérez-Alonso, J.; Callejón, Á.J. Assessment of the influence of working pressure and application rate on pesticide spray application with a hand-held spray gun on greenhouse pepper crops. Crop Prot. 2017, 96, 7–13. [Google Scholar] [CrossRef]
- Rincón, V.J.; Grella, M.; Marucco, P.; Alcatrão, L.E.; Sánchez-Hermosilla, J.; Balsari, P. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Sci. Total Environ. 2020, 726, 138509. [Google Scholar] [CrossRef]
- Dario, G.; Precipito, L.M.B.; Oliveira, J.V.D.; Lucilhia, L.V.D.S.; de Oliveira, R.B. Application techniques of pesticides in greenhouse tomato crops. Hortic. Bras. 2020, 38, 146–152. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Pérez-Alonso, J.; Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Agüera-Vega, F. Evaluation of electrostatic spraying equipment in a greenhouse pepper crop. Horticulturae 2022, 8, 541. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Chechetto, R.G.; Hewitt, A.J.; Chauhan, B.S.; Adkins, S.W.; Kruger, G.R.; O’Donnell, C.C. Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Prot. 2016, 81, 14–19. [Google Scholar] [CrossRef]
- Badules, J.; Vidal, M.; Boné, A.; Llop, J.; Salcedo, R.; Gil, E.; García-Ramos, F.J. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry. Comput. Electron. Agric. 2018, 149, 166–174. [Google Scholar] [CrossRef]
- Benalia, S.; Mantella, A.; Sbaglia, M.; Abenavoli, L.M.; Bernardi, B. Automated fixed system specifically designed for agrochemical applications in protected crops. Agriculture 2025, 15, 330. [Google Scholar] [CrossRef]
- Law, S.E. Agricultural electrostatic spray application: A review of significant research and development during the 20th century. J. Electrost. 2001, 51–52, 25–42. [Google Scholar]
- Yanliang, Z.; Qi, L.; Wei, Z. Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection. Int. J. Agric. Biol. Eng. 2017, 10, 68–76. [Google Scholar] [CrossRef]
- Appah, S.; Wang, P.; Ou, M.; Gong, C.; Jia, W. Review of electrostatic system parameters, charged droplets characteristics and substrate impact behavior from pesticides spraying. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Derksen, R.C.; Frantz, J.; Ranger, C.; Locke, J.C.; Zhu, H.; Krause, C.R. Comparing greenhouse handgun delivery to poinsettias by spray volume and quality. Trans. ASABE 2008, 51, 27–35. [Google Scholar] [CrossRef]
- Braekman, P.; Foque, D.; Messens, W.; Van Labeke, M.C.; Pieters, J.G.; Nuyttens, D. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes. Pest Manag. Sci. 2010, 66, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Christovam, R.S.; Raetano, C.G.; Dal Pogetto, M.H.F.A.; Prado, E.P.; Aguiar Júnior, H.O.; Gimenes, M.J.; Serra, M.E. Effect of nozzle angle and air-jet parameters in air assisted sprayer on biological effect of soybean Asian rust chemical protection. J. Plant Prot. Res. 2010, 50, 347–353. [Google Scholar]
- Pimentel Gomes, F. Experimental Statistic Course, 2nd ed.; Nobel: São Paulo, SP, Brazil, 1985; p. 467. [Google Scholar]
- Holterman, H.J. Kinetics and Evaporation of Water Drops in Air; IMAG Report 2003-12: Wageningen, The Netherlands, 2003; p. 67. [Google Scholar]
- Becce, L.; Mazzi, G.; Ali, A.; Bortolini, M.; Gregoris, E.; Feltracco, M.; Gambaro, A. Wind tunnel evaluation of plant protection products drift using an integrated chemical–physical approach. Atmosphere 2024, 15, 656. [Google Scholar] [CrossRef]
- Cerqueira, D.T.R.D.; Raetano, C.G.; Dal Pogetto, M.H.F.A.; Carvalho, M.M.; Prado, E.P.; Costa, S.Í.D.A.; Moreira, C.A.F. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer. Sci. Agric. 2017, 74, 32–40. [Google Scholar] [CrossRef]
- Sasaki, R.S.; Teixeira, M.M.; Fernandes, H.C.; Monteiro, P.M.D.B. Deposition and distribution uniformity of spray in coffee plants using electrostatic spraying. Cienc. Rural 2013, 43, 1605–1609. [Google Scholar] [CrossRef]
- Fanela, T.L.M.; Baldin, E.L.L.; Pannuti, L.E.; Cruz, P.L.; Crotti, A.E.M.; Takeara, R.; Kato, M.J. Lethal and inhibitory activities of plant-derived essential oils against Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) biotype B in tomato. Neotrop. Entomol. 2016, 45, 201–210. [Google Scholar] [CrossRef]
- Guigón López, C.; Muñoz Castellanos, L.N.; Flores Ortiz, N.A.; González González, J.A. Control of powdery mildew (Leveillula taurica) using Trichoderma asperellum and Metarhizium anisopliae in different pepper types. BioControl 2019, 64, 77–89. [Google Scholar] [CrossRef]
- Ma, J.; Liu, K.; Chen, C.; Ahmad, F.; Qiu, B. Influence of plant leaf moisture content on retention of electrostatic-induced droplets. Sustainability 2021, 13, 11685. [Google Scholar] [CrossRef]
- Maski, D.; Durairaj, D. Effects of charging voltage, application speed, target height, and orientation upon charged spray deposition on leaf abaxial and adaxial surfaces. Crop Prot. 2010, 29, 134–141. [Google Scholar] [CrossRef]
- Garcerá, C.; Fonte, A.; Salcedo, R.; Soler, A.; Chueca, P. Dose expression for pesticide application in citrus: Influence of canopy size and sprayer. Agronomy 2020, 10, 1887. [Google Scholar] [CrossRef]
- Schmidt, D.; Zamban, D.T.; Prochnow, D.; Caron, B.O.; Souza, V.Q.; Paula, G.M.; Cocco, C. Phenological characterization, phyllochron and thermal requirement of Italian tomato in two cropping seasons. Hortic. Bras. 2017, 35, 89–96. [Google Scholar] [CrossRef]
- Palma, R.P.; Cunha, J.P.D.; Guimarães, E.C.; Santana, D.G.D.; Assunção, H.H.D. Multivariate analysis applied to spray deposition in ground application of phytosanitary products in coffee plants. Eng. Agric. 2021, 41, 458–467. [Google Scholar] [CrossRef]
- Souza, D.M.; Raetano, C.G.; Moreira, C.A.F.; Bueno, R.C.O.F.; Carvalho, M.M. Effects of news sowing arrangements and air assistance on fungicide spray distribution on soybean crop. Acta Sci. 2024, 41, 42700. [Google Scholar] [CrossRef]
- Ou, M.; Zhang, Y.; Wu, M.; Wang, C.G.; Dai, S.; Wang, M.; Dong, X.; Jiang, L. Development and experiment of an air-assisted sprayer for vineyard pesticide application. Agriculture 2024, 14, 2279. [Google Scholar] [CrossRef]
Height of Sweet Pepper Plants (m) | ||||
---|---|---|---|---|
Crop | Application Treatments | 0.7 | 1.4 | 2.1 |
2019 | SFH | 662 | 850 | 1360 |
RVH | 323 | 401 | 695 | |
PAEA | 152 | 196 | 356 | |
PAA | 146 | 207 | 370 | |
2020 | SFH | 570 | 746 | 1102 |
RVH | 304 | 396 | 556 | |
PAEA | 147 | 192 | 258 | |
PAA | 152 | 193 | 265 |
Crop Season | Plant Height (m) | LAI | Temperature (°C) | Relative Humidity (%) |
---|---|---|---|---|
2019 | 0.7 | 1.11 | 27 ± 3 | 60 ± 4 |
1.4 | 3.21 | 28 ± 3 | 55 ± 5 | |
2.1 | 4.66 | 28 ± 2 | 62 ± 3 | |
2020 | 0.7 | 0.95 | 22 ± 2 | 70 ± 3 |
1.4 | 2.65 | 23 ± 2 | 65 ± 4 | |
2.1 | 3.92 | 27 ± 3 | 69 ± 4 |
Application Treatments | Adaxial | Abaxial | ||
---|---|---|---|---|
External | Internal | External | Internal | |
Sweet pepper cultivation at a height of 0.7 m (stage 1) | ||||
SFH | 5.02 a | 3.06 a | 0.55 | 0.84 |
RVH | 4.24 ab | 3.44 a | 0.47 | 0.56 |
PAEA | 3.65 ab | 1.49 b | 0.81 | 0.96 |
PAA | 2.76 b | 1.70 b | 0.60 | 0.82 |
Sweet pepper cultivation at a height of 1.4 m (stage 2) | ||||
SFH | 0.64 a | 0.44 a | 0.13 b | 0.09 b |
RVH | 0.89 a | 0.49 a | 0.14 b | 0.12 b |
PAEA | 0.58 a | 0.21 b | 0.28 a | 0.17 a |
PAA | 0.32 b | 0.23 b | 0.25 a | 0.10 b |
Sweet pepper cultivation at a height of 2.1 m (stage 3) | ||||
SFH | 2.57 a | 0.65 a | 1.07 a | 0.73 a |
RVH | 1.21 a | 0.78 a | 0.26 b | 0.24 b |
PAEA | 1.36 a | 0.35 b | 1.22 a | 0.50 ab |
PAA | 0.65 b | 0.26 b | 0.77 a | 0.30 b |
Application Treatments | Adaxial | Abaxial | ||
---|---|---|---|---|
External | Internal | External | Internal | |
Sweet pepper cultivation at a height of 0.7 m | ||||
SFH | 2.06 a | 1.47 a | 0.15 b | 0.11 b |
RVH | 2.73 a | 1.94 a | 0.10 b | 0.06 b |
PAEA | 0.97 b | 0.52 b | 0.52 a | 0.23 a |
PAA | 0.48 c | 0.32 b | 0.45 a | 0.21 a |
Sweet pepper cultivation at a height of 1.4 m | ||||
SFH | 0.71 a | 0.45 a | 0.32 a | 0.20 a |
RVH | 0.92 a | 0.64 a | 0.15 b | 0.13 b |
PAEA | 0.49 b | 0.15 b | 0.35 a | 0.18 a |
PAA | 0.40 b | 0.08 b | 0.58 a | 0.13 b |
Sweet pepper cultivation at a height of 2.1 m | ||||
SFH | 1.23 a | 0.63 a | 0.57 a | 0.24 |
RVH | 1.24 a | 0.38 a | 0.25 b | 0.23 |
PAEA | 0.26 b | 0.16 b | 0.37 ab | 0.32 |
PAA | 0.15 b | 0.08 c | 0.41 ab | 0.20 |
Application Treatments | Adaxial | Abaxial | ||
---|---|---|---|---|
External | Internal | External | Internal | |
SFH | 68 a | 41 a | 32 b | 28 |
RVH | 47 b | 27 b | 24 c | 15 |
PAEA | 42 b | 19 b | 42 a | 21 |
PAA | 38 b | 17 b | 32 b | 15 |
Ftreatments | 10.55 * | 14.75 * | 20.13 * | 7.93 NS |
Fexperiments | 0.96 NS | 6.35 NS | 10.11 NS | 0.62 NS |
Ftreat × exp | 2.77 NS | 2.78 NS | 0.6 NS | 2.1 NS |
CV% | 14.32 | 20.37 | 20.40 | 24.07 |
Major MQ/Minor MQ ** | 1.56 | 2.55 | 1.58 | 1.64 |
Application Treatments | 2019 Season | 2020 Season | ||
---|---|---|---|---|
Crop Row | Between Crop Rows | Crop Row | Between Crop Rows | |
Sweet pepper cultivation at a height of 0.7 m | ||||
SFH | 1.81 a | 1.61 a | 1.10 a | 0.79 a |
RVH | 1.70 a | 0.98 b | 1.33 a | 0.23 b |
PAEA | 1.25 b | 0.87 b | 0.54 b | 0.23 b |
PAA | 1.18 b | 0.97 b | 0.50 b | 0.21 b |
Sweet pepper cultivation at a height of 1.4 m | ||||
SFH | 0.17 b | 0.11 b | 1.21 b | 0.27 a |
RVH | 0.31 a | 0.20 a | 1.67 a | 0.23 a |
PAEA | 0.18 b | 0.11 b | 0.50 c | 0.12 a |
PAA | 0.19 b | 0.11 b | 0.40 c | 0.16 a |
Sweet pepper cultivation at a height of 2.1 m | ||||
SFH | 2.39 a | 0.73 a | 4.05 a | 0.04 a |
RVH | 1.91 a | 0.61 a | 3.96 a | 0.03 a |
PAEA | 1.84 a | 0.69 a | 0.34 b | 0.04 a |
PAA | 1.87 a | 0.63 a | 0.46 b | 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dario, G.; Del Bem Junior, L.; da Silva, F.N.; Negrisoli, M.M.; Prado, E.P.; da Silva e Oliveira, F.A.; Sartori, M.M.P.; Sierra, J.F.V.; Raetano, C.G. Effect of Application Techniques on Spray Quality Optimization in Sweet Pepper Cultivation in Protected Environments. AgriEngineering 2025, 7, 157. https://doi.org/10.3390/agriengineering7050157
Dario G, Del Bem Junior L, da Silva FN, Negrisoli MM, Prado EP, da Silva e Oliveira FA, Sartori MMP, Sierra JFV, Raetano CG. Effect of Application Techniques on Spray Quality Optimization in Sweet Pepper Cultivation in Protected Environments. AgriEngineering. 2025; 7(5):157. https://doi.org/10.3390/agriengineering7050157
Chicago/Turabian StyleDario, Gustavo, Luciano Del Bem Junior, Flávio Nunes da Silva, Matheus Mereb Negrisoli, Evandro Pereira Prado, Fagner Angelo da Silva e Oliveira, Maria Márcia Pereira Sartori, José Francisco Velásquez Sierra, and Carlos Gilberto Raetano. 2025. "Effect of Application Techniques on Spray Quality Optimization in Sweet Pepper Cultivation in Protected Environments" AgriEngineering 7, no. 5: 157. https://doi.org/10.3390/agriengineering7050157
APA StyleDario, G., Del Bem Junior, L., da Silva, F. N., Negrisoli, M. M., Prado, E. P., da Silva e Oliveira, F. A., Sartori, M. M. P., Sierra, J. F. V., & Raetano, C. G. (2025). Effect of Application Techniques on Spray Quality Optimization in Sweet Pepper Cultivation in Protected Environments. AgriEngineering, 7(5), 157. https://doi.org/10.3390/agriengineering7050157