Spatiotemporal Characterization of Solar Radiation in a Green Dwarf Coconut Intercropping System Using Tower and Remote Sensing Data
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Seasonal Characterization
3.2. Spatial Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, J.V.D.N.; Costa, D.L.P.; Nunes, H.G.G.C.; Silva Junior, A.C.D.; Sousa, A.M.L.D.; Souza, P.J.D.O.P.D.; Ortega-Farias, S. Radiation Balance and Partitioning of Latent and Sensible Heat Fluxes over a Lime Orchard in Eastern Amazon. Rev. Bras. de Meteorol. 2022, 37, 491–502. [Google Scholar] [CrossRef]
- Fuentes-Penailillo, F.; Ortega-Farias, S.; Acevedo-Opazo, C.; Fonseca-Luengo, D. Implementation of a two-source model for estimating the spatial variability of olive evapotranspiration using satellite images and ground-based climate data. Water 2018, 10, 339. [Google Scholar] [CrossRef]
- Fernandes, G.S.T.; Lopes, P.M.O.; Moura, G.B.A.; Silva, M.V.; Galvíncio, J.D.; Santos, A. Balance of photosynthetically active radiation by remote sensing in a seasonally dry tropical forest in Northeastern Brazil. Rev. Bras. Geogr. Fís. 2021, 14, 2486–2509. [Google Scholar] [CrossRef]
- Viégas, I.J.M.; Costa, M.G.; Ferreira, E.V.O.; Peréz, N.L.P.; Barata, H.S.; Galvão, J.R.; Conceição, H.E.O.; Espirito Santo, S.D. Contribution of Pueraria phaseoloides L. in the Cycling of Macronutrients in oil Palm Plantations. J. Agric. Stud. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Benassi, A.C.; Santana, E.N.; Fanton, C. O Cultivo do Coqueiro-Anão-Verde: Tecnologias de Produção; Incaper: Vitória, Brazil, 2013; 120p. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 July 2024).
- IBGE. Instituto Brasileiro de Geografia e Estatística. Produção Agrícola: Lavoura Permanente. 2022. Available online: https://sidra.ibge.gov.br/tabela/5457#resultado (accessed on 12 July 2024).
- Ferreira, T.R.; Da Silva, B.B.; De Moura, M.S.; Verhoef, A.; Nobrega, R.L. The use of remote sensing for reliable estimation of net radiation and its components: A case study for contrasting land covers in an agricultural hotspot of the Brazilian semiarid region. Agric. For. Meteorol. 2020, 291, 108052. [Google Scholar] [CrossRef]
- Walker, E.; Mora, D.C.; Fagioli, G.; Venturini, V. Effect of the net radiation substitutes on maize and soybean evapotranspiration estimation using machine learning methods. AgriScientia 2022, 39, 1–17. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, D.; Zhang, J.; Zhang, J.; Zhang, S.; Bai, Y.; Yang, S. Ecosystem evapotranspiration partitioning and Its spatial–temporal variation based on eddy covariance observation and machine learning method. Remote Sens. 2023, 15, 4831. [Google Scholar] [CrossRef]
- Sadras, V.O.; Villalobos, F.J.; López-Bernal, Á.; Fereres, E. Radiation Interception, Radiation Use Efficiency, and Crop Productivity. In Principles of Agronomy for Sustainable Agriculture; Villalobos, F.J., Fereres, E., Eds.; Springer: Cham, Switzerland, 2024; pp. 177–197. [Google Scholar] [CrossRef]
- Teixeira, A.D.C.; de Miranda, F.R.; Leivas, J.F.; Pacheco, E.P.; Garçon, E.A.M. Water productivity assessments for dwarf coconut by using Landsat 8 images and agrometeorological data. ISPRS J. Photogramm. Remote Sens. 2019, 155, 150–158. [Google Scholar] [CrossRef]
- Senatilleke, U.; Abeysiriwardana, H.; Makubura, R.K.; Anwar, F.; Rathnayake, U. Estimation of potential evapotranspiration across Sri Lanka using a distributed dual-source evapotranspiration model under data scarcity. Adv. Meteorol. 2022, 2022, 6819539. [Google Scholar] [CrossRef]
- Kelley, J. Assessment and correction of solar radiation measurements with simple neural networks. Atmosphere 2020, 11, 1160. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.E.; Clulow, A.D. Assessment of three models for estimating daily net radiation in southern Africa. Agric. Water Manag. 2020, 229, 105951. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zhang, W.; Arshad, A. Regional distribution of net radiation over different ecohydrological land surfaces. Atmosphere 2020, 11, 1229. [Google Scholar] [CrossRef]
- Angelocci, L.R.; Pilau, F.G.; Simon, J.; Marin, F.R. Performance and uncertainty of the all-wave net radiation space-time integrators by treetops. Agrometeoros 2023, 31, e027217. [Google Scholar] [CrossRef]
- Paca, V.H.D.M.; Espinoza-Dávalos, G.E.; Silva, R.; Tapajós, R.; Gaspar, A.B.G. Remote sensing products validated by flux tower data in Amazon rain forest. Remote Sens. 2022, 14, 1259. [Google Scholar] [CrossRef]
- Sales, V.G.; Strobl, E.; Elliott, R.J. Cloud cover and its impact on Brazil’s deforestation satellite monitoring program: Evidence from the cerrado biome of the Brazilian Legal Amazon. Appl. Geogr. 2022, 140, 102651. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Liang, S. Comprehensive assessment of five global daily downward shortwave radiation satellite products. Sci. Remote Sens. 2021, 4, 100028. [Google Scholar] [CrossRef]
- Moraes, B.C.D.; Costa, J.M.N.D.; Costa, A.C.L.D.; Costa, M.H. Spatial and temporal variation of precipitation in the State of Pará. Acta Amaz. 2005, 35, 207–214. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Souza, E.B.; Silva Ferreira, D.B.; Guimarães, J.T.F.; dos Santos Franco, V.; Azevedo, F.T.M. Climatological rainfall patterns and trends in the rainy and dry regimes in Eastern Amazon. Rev. Bras. de Clim. 2017, 21, 81–93. [Google Scholar] [CrossRef]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Rio de Janeiro, Brazil, 2018; 356p. [Google Scholar]
- United States. Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA NRCS; 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ (accessed on 25 November 2023).
- Carvalho, E.D.O.T.D.; Fernandes, G.S.T.; Rua, M.L.; Monteiro, A.C.; Luz, D.B.D.; Lisboa, S.P.P.; Silva, J.V.F.; Pinto, J.V.N.; Miranda, F.R.; Lins, P.M.P.; et al. Net radiation partitioning, evapotranspiration, and crop coefficients of the green dwarf coconut in Santa Izabel do Pará, Brazilian Amazon. Bragantia 2024, 83, e20230160. [Google Scholar] [CrossRef]
- Fernandes, G.S.T.; Ribeiro, L.R.D.T.; Rua, M.L.; Vieira, W.G.M.; Pinto, J.V.D.N.; Souza, P.J.D.O.P.D. Meteorological conditions afect the seasonal development and yield of green dwarf coconut. Pesqui. Agropecu. Trop. 2024, 54, e77037. [Google Scholar] [CrossRef]
- Crawford, C.J.; Roy, D.P.; Arab, S.; Barnes, C.; Vermote, E.; Hulley, G.; Gerace, A.; Choate, M.; Engebretson, C.; Micijevic, E.; et al. The 50-year Landsat collection 2 archive. Sci. Remote Sens. 2023, 8, 100103. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Fountoulakis, I.; Bais, A.F.; Psiloglou, B.E.; Papadimitriou, N.; Raptis, I.-P.; Kazantzidis, A.; Kontoes, C.; Hatzaki, M.; Kazadzis, S. Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and sort-term forecasting. Atmospheric Meas. Tech. 2024, 17, 1851–1877. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Silva, B.B.D.; Braga, A.C.; Braga, C.C.; Oliveira, L.M.; Montenegro, S.M.; Barbosa Junior, B. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Rev. Bras. De Eng. Agricola E Ambient. 2016, 20, 3–8. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2024. Available online: https://www.r-project.org/ (accessed on 10 January 2024).
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Souza, A.P.; Zamadei, T.; Borella, D.R.; Martim, C.C.; Almeida, F.T.; Escobedo, J.F. Diurnal Evolution and Estimates of Hourly Diffuse Radiation Based on Horizontal Global Radiation, in Cerrado-Amazon Transition, Brazil. Atmosphere 2023, 14, 1289. [Google Scholar] [CrossRef]
- Freire, A.S.C.; Vitorino, M.I.; de Souza, A.M.L.; Germano, M.F. Analysis of the energy balance and CO2 flow under the influence of the seasonality of climatic elements in a mangrove ecosystem in Eastern Amazon. Int. J. Biometeorol. 2022, 66, 647–659. [Google Scholar] [CrossRef]
- Fernandes, D.A.J.; Vitorino, M.I.; Jardim, M.A.G. Efeito da radiação solar sobre a regeneração natural de manguezal em Cuiarana, Salinópolis. Pará. Rev. Bras. Ciênc. Ambient. 2018, 49, 8–122. [Google Scholar]
- Tota, J.; Fisch, G.; Fuentes, J.; Oliveira, P.J.D.; Garstang, M.; Heitz, R.; Sigler, J. The analysis of the daily rainfall in a pasture site during the Wet Season of 1999—TRMM/ LBA project. Acta Amaz. 2000, 30, 629. [Google Scholar] [CrossRef]
- Querino, C.A.S.; Júnior, J.M.L.; Moura, M.A.L. Radiation Balance in the Caatinga Biome in the Semi-arid of Alagoas, Brazil. Rev. Bras. Geogr. Física 2022, 15, 2715–2729. [Google Scholar] [CrossRef]
- Li, H.; Lo, M.H.; Ryu, D.; Peel, M.; Zhang, Y. Possible increase of air temperature by irrigation. Geophys. Res. Lett. 2022, 49, e2022GL100427. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Hua, W.; Ma, H.; Zhou, J.; Pang, X. Modeling the effects of present-day irrigation on temperature extremes over China. Front. Earth Sci. 2023, 11, 1084892. [Google Scholar] [CrossRef]
- Pieri, P. Modelling radiative balance in a row-crop canopy: Cross-row distribution of net radiation at the soil surface and energy available to clusters in a vineyard. Ecol. Model. 2010, 221, 802–811. [Google Scholar] [CrossRef]
- Nur Arina, I.; Martini, M.Y.; Surdiana, S.; Mohd Fauzi, R.; Zulkefly, S. Radiation dynamics on crop productivity in different cropping systems. Int. J. Agron. 2021, 2021, 4570616. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Z.; Tang, W.; Huang, Y.; Nan, Z. Effect of row configuration on yield and radiation use of common vetch-oat strip intercropping on the Qinghai-Tibetan plateau. Eur. J. Agron. 2021, 128, 126290. [Google Scholar] [CrossRef]
- Silva, B.B.D.; Braga, A.C.; Braga, C.C.; Oliveira, L.M.M.D.; Galvíncio, J.D.; Montenegro, S.M.G.L. Evapotranspiration and assessment of water consumed in irrigated area of the Brazilian Semiarid Region by remote sensing. Pesqui. Agropecu. Bras. 2012, 47, 1218–1226. [Google Scholar] [CrossRef]
- Fausto, M.A.; Machado, N.G.; de Souza Nogueira, J.; Biudes, M.S. Net radiation estimated by remote sensing in Cerrado areas in the Upper Paraguay River Basin. J. Appl. Remote Sens. 2014, 8, 083541. [Google Scholar] [CrossRef]
- Marques, H.O.; Biudes, M.S.; Pavão, V.M.; Machado, N.G.; Querino, C.A.S.; Danelichen, V.H.D.M. Estimated net radiation in an Amazon–Cerrado transition forest by Landsat 5 TM. J. Appl. Remote Sens. 2017, 11, 046020. [Google Scholar] [CrossRef]
- Oliveira, G.D.; Moraes, E.C. Validation of net radiation obtained from MODIS/TERRA data in Amazonia with LBA surface measurements. Acta Amaz. 2013, 43, 353. [Google Scholar] [CrossRef]
Characteristics | Irrigated | Non-Irrigated | ||
---|---|---|---|---|
Profundity (cm) | ||||
0–20 | 20–40 | 0–20 | 20–40 | |
pH (H2O) | 5.34 | 4.79 | 5.83 | 5.05 |
P (mg dm−3) | 25.87 | 2.03 | 32.03 | 2.25 |
Ca2+ (cmolc dm−3) | 1.08 | 0.44 | 1.64 | 0.3 |
Mg2+ (cmolc dm−3) | 0.71 | 0.32 | 0.8 | 0.39 |
K+ (mg dm−3) | 58.14 | 37.06 | 24.71 | 15.63 |
H+ + Al3+ (cmolc dm−3) | 1.95 | 1.73 | 1.69 | 1.95 |
Cation exchange capacity (cmolc dm−3) | 3.99 | 2.68 | 4.3 | 2.94 |
Base saturation (%) | 51.13 | 35.58 | 60.8 | 33.68 |
Al saturation (%) | 5.56 | 32.56 | 1.51 | 41.41 |
Sand (%) | 70 | 65.5 | 78.9 | 71.9 |
Silt (%) | 22 | 16.5 | 18.1 | 15.1 |
Clay (%) | 8 | 18 | 3 | 13 |
Field capacity (m3 m−3) | 0.19 | 0.21 | 0.15 | 0.18 |
Point of permanent wilting (m3 m−3) | 0.1 | 0.11 | 0.07 | 0.09 |
Critical humidity (m3 m−3) | 0.13 | 0.15 | 0.11 | 0.13 |
Season | Irrigated | Non-Irrigated | ||
---|---|---|---|---|
Row | Inter-Row | Row | Inter-Row | |
Dry | 0.65 Aaa | 0.67 Aaa | 0.56 Aab | 0.46 Bab |
Rainy | 0.65 Aaa | 0.64 Aaa | 0.54 Aab | 0.47 Bab |
Index | Irrigated | Non-Irrigated | ||
---|---|---|---|---|
Rg | Rn | Rg | Rn | |
R2 | 0.86 | 0.95 | 0.76 | 0.63 |
Ef | −0.55 | 0.88 | 0.39 | −0.23 |
MAE% | 8.40 | 2.72 | 6.69 | 8.16 |
RMSE% | 9.23 | 3.29 | 7.79 | 10.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, G.S.T.; Miranda, B.R.d.; Ribeiro, L.R.d.T.; Rua, M.L.; Nery, M.K.M.; Navarro, L.M.; Conceição, J.B.d.; Pinto, J.V.d.N.; Moura, V.B.; Jardim, A.M.d.R.F.; et al. Spatiotemporal Characterization of Solar Radiation in a Green Dwarf Coconut Intercropping System Using Tower and Remote Sensing Data. AgriEngineering 2025, 7, 88. https://doi.org/10.3390/agriengineering7030088
Fernandes GST, Miranda BRd, Ribeiro LRdT, Rua ML, Nery MKM, Navarro LM, Conceição JBd, Pinto JVdN, Moura VB, Jardim AMdRF, et al. Spatiotemporal Characterization of Solar Radiation in a Green Dwarf Coconut Intercropping System Using Tower and Remote Sensing Data. AgriEngineering. 2025; 7(3):88. https://doi.org/10.3390/agriengineering7030088
Chicago/Turabian StyleFernandes, Gabriel Siqueira Tavares, Breno Rodrigues de Miranda, Luis Roberto da Trindade Ribeiro, Matheus Lima Rua, Maryelle Kleyce Machado Nery, Leandro Monteiro Navarro, Joshuan Bessa da Conceição, João Vitor de Nóvoa Pinto, Vandeilson Belfort Moura, Alexandre Maniçoba da Rosa Ferraz Jardim, and et al. 2025. "Spatiotemporal Characterization of Solar Radiation in a Green Dwarf Coconut Intercropping System Using Tower and Remote Sensing Data" AgriEngineering 7, no. 3: 88. https://doi.org/10.3390/agriengineering7030088
APA StyleFernandes, G. S. T., Miranda, B. R. d., Ribeiro, L. R. d. T., Rua, M. L., Nery, M. K. M., Navarro, L. M., Conceição, J. B. d., Pinto, J. V. d. N., Moura, V. B., Jardim, A. M. d. R. F., Ortega-Farias, S., & Souza, P. J. d. O. P. d. (2025). Spatiotemporal Characterization of Solar Radiation in a Green Dwarf Coconut Intercropping System Using Tower and Remote Sensing Data. AgriEngineering, 7(3), 88. https://doi.org/10.3390/agriengineering7030088