Effect of Green Roofs on the Thermal Environment of Prototype Broiler Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Vegetation Coverture
2.3. Irrigation Management of Vegetation Coverture
2.4. Types of Tested Roofing Materials
2.5. Characterization of the Thermal Environment of the Prototypes
2.6. Characterization of Thermal Comfort Indexes
2.7. Statistical Analyses
3. Results
3.1. Open Prototyping Environments
3.1.1. External Environment
3.1.2. Thermal Environment
3.1.3. Thermal Comfort
3.2. Closed Prototyping Environments
3.2.1. External Environment
3.2.2. Thermal Environment
3.2.3. Thermal Comfort
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Symbols and Abbreviations
References
- ABPA. Associação Brasileira de Proteína Animal. 2023, pp. 1–75. Available online: https://abpa-br.org/ (accessed on 22 April 2024).
- ABPA. Associação Brasileira de Proteína Animal. 2024, pp. 1–77. Available online: https://abpa-br.org/wp-content/uploads/2024/04/ABPA-Relatorio-Anual-2024_capa_frango.pdf (accessed on 22 April 2024).
- Mascarenhas, N.M.H.; da Costa, A.N.L.; Pereira, M.L.L.; de Caldas, A.C.A.; Batista, L.F.; Andrade, E.L.G.; Mascarenhas, N.M.H.; da Costa, A.N.L.; Pereira, M.L.L.; de Caldas, A.C.A.; et al. Thermal conditioning in the broiler production: Challenges and possibilities. J. Anim. Behav. Biometeorol. 2020, 6, 52–55. [Google Scholar] [CrossRef]
- Gonçalves, I.C.M.; Turco, S.H.N.; Neto, J.P.L.; Nascimento, J.W.B.D.; de Lima, V.L.A.; Borges, V.P. Thermal performance of aviary located in the semiarid region of Pernambuco based on computer simulation. Rev. Bras. Eng. Agric. Ambient. 2022, 26, 533–540. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Syarifuddin, H.; Sy, A.R.; Devitriano, D. CH4 Gas Mitigation Strategy with the Use of Interpretative Structural Modeling Method. In Proceedings of the 3rd Green Development International Conference (GDIC 2020); Atlantis Press: Amsterdam, The Netherlands, 2021; Volume 205, pp. 474–481. [Google Scholar] [CrossRef]
- IPCC. 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Melo, T.V.; Furlan, R.L.; Milani, A.P.; Buzanskas, M.E.; de Moura, A.M.A.; Mota, D.A. Roof pitch and exposure and different roofing materials in reduced models of animal production facilities in the fall and winter. Rev. Bras. Saúde Produção Anim. 2015, 16, 658–666. [Google Scholar] [CrossRef]
- Andric, I.; Kamal, A.; Al-Ghamdi, S.G. Efficiency of green roofs and green walls as climate change mitigation measures in extremely hot and dry climate: Case study of Qatar. Energy Rep. 2020, 6, 2476–2489. [Google Scholar] [CrossRef]
- Baêta, F.C.; Souza, C.F. Ambiência em Edificações Rurais: Conforto Animal, 2nd ed.; UFV: Viçosa, Brazil, 2010. [Google Scholar]
- Damasceno, F.A.; Schiassi, L.; Yanagi, T.; Osorio-Saraz, J.A.; Oliveira, J.L.-D. Evaluación térmica de tejas ecologicas en modelos físicos de galpones avicolas. DYNA 2016, 83, 114–119. [Google Scholar] [CrossRef]
- Sampaio, C.A.P.; Terezo, R.F.; Motta, G.; Silva, L.M.C.; Júnior, I.V. Environmental thermal comfort of a reduced model using cross-laminated timber. Eng. Agrícola 2020, 40, 413–419. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Bollman, M.A.; DeSantis, G.E.; Waschmann, R.S.; Mayer, P.M. Effects of shading and composition on green roof media temperature and moisture. J. Environ. Manag. 2021, 281, 111882. [Google Scholar] [CrossRef]
- La Roche, P.; Yeom, D.J.; Ponce, A. Passive cooling with a hybrid green roof for extreme climate. Energy Build. 2020, 224, 110243. [Google Scholar] [CrossRef]
- Krebs, L.F.; Johansson, E. Influence of microclimate on the effect of green roofs in Southern Brazil—A study coupling outdoor and indoor thermal simulations. Energy Build. 2021, 241, 110963. [Google Scholar] [CrossRef]
- Boafo, F.E.; Kim, J.T.; Kim, J.H. Evaluating the impact of green roof evapotranspiration on annual building energy performance. Int. J. Green Energy 2017, 14, 479–489. [Google Scholar] [CrossRef]
- La Roche, P.; Berardi, U. Comfort and energy savings with active green roofs. Energy Build. 2014, 82, 492–504. [Google Scholar] [CrossRef]
- Theodosiou, T. Green Roofs in Buildings: Thermal and Environmental Behaviour. Adv. Build. Energy Res. 2009, 3, 271–288. [Google Scholar] [CrossRef]
- Lazzarin, R.M.; Castellotti, F.; Busato, F. Experimental measurements and numerical modelling of a green roof. Energy Build. 2005, 37, 1260–1267. [Google Scholar] [CrossRef]
- Sailor, D.J.; Elley, T.B.; Gibson, M. Exploring the building energy impacts of green roof design decisions-a modeling study of buildings in four distinct climates. J. Build. Phys. 2012, 35, 372–391. [Google Scholar] [CrossRef]
- Droz, A.G.; Coffman, R.R.; Blackwood, C.B. Plant diversity on green roofs in the wild: Testing practitioner and ecological predictions in three midwestern (USA) cities. Urban For. Urban Green 2021, 60, 127079. [Google Scholar] [CrossRef]
- Sultana, M.N.; Akib, S.; Ashraf, M.A. Thermal comfort and runoff water quality performance on green roofs in tropical conditions. Geol. Ecol. Landsc. 2017, 1, 47–55. [Google Scholar] [CrossRef]
- Yang, Y.; Davidson, C.I.; Zhang, J. Evaluation of thermal performance of green roofs via field measurements and hygrothermal simulations. Energy Build. 2021, 237, 110800. [Google Scholar] [CrossRef]
- Houchmand, L.J.; Martí, M.M.; Gassó-Domingo, S. Photovoltaics and green roofs: Holistic analysis in built environments. Renew. Sustain. Energy Rev. 2025, 207, 114987. [Google Scholar] [CrossRef]
- Yan, J.; Yang, P.; Wang, B.; Wu, S.; Zhao, M.; Zheng, X.; Wang, Z.; Zhang, Y.; Fan, C. Green Roof Systems for Rainwater and Sewage Treatment. Water 2024, 16, 2090. [Google Scholar] [CrossRef]
- Jamei, E.; Chau, H.W.; Seyedmahmoudian, M.; Mekhilef, S.S.; Sami, F.A. Green roof and energy—Role of climate and design elements in hot and temperate climates. Heliyon 2023, 9, e15917. [Google Scholar] [CrossRef] [PubMed]
- Kostadinović, D.; Jovanović, M.; Bakić, V.; Stepanić, N. Mitigation of urban particulate pollution using lightweight green roof system. Energy Build. 2023, 293, 113203. [Google Scholar] [CrossRef]
- Talwar, P.; Verma, N.; Khatri, H.; Ahire, P.D.; Chaudhary, G.; Lindenberger, C.; Vivekanand, V. A systematic review of photovoltaic-green roof systems in different climatic conditions focusing on sustainable cities and societies. Sustain. Cities Soc. 2023, 98, 104813. [Google Scholar] [CrossRef]
- Carneiro, T.A.; Guiselini, C.; Pandorfi, H.; Neto, J.P.L.; Loges, V.; de Souza, R.F.L. Condicionamento térmico primário de instalações rurais por meio de diferentes tipos de cobertura. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 1086–1092. [Google Scholar] [CrossRef]
- Souza, M.A.; Sousa, F.C.; Baêta, F.C.; Vigoderis, R.B.; Zanetoni, H.H.R. Green roofs in animal production facilities—A review of strategies for estimating the carbon dioxide balance. Renew. Sustain. Energy Rev. 2024, 189, 114000. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Elibrary. Asabe.Org. 1981, 24, 711–0714. [Google Scholar] [CrossRef]
- Rosenberg, V.S.B. Microclimate: The Biological Environment; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Lei nº 6.514, de 22 de dezembro de 1977. Altera o Capítulo V, Título II, da Consolidação das Leis do Trabalho, relativa à Segurança e Medicina do Trabalho. Diário Oficial da União, Brasília, DF, 23 dez. 1977. Available online: https://legislacao.presidencia.gov.br/ (accessed on 22 April 2024).
- Kelly, C.F.; Bond, T.E. Effectiveness of artificial shade materials. Agric. Eng. 1958, 39, 758–764. [Google Scholar]
- Jentzsch, R.; Costa Baêta, F.; Tinôco, I.F.F.; Damasceno, F.A.; Cecon, P.R.; Saraz, J.A.O. Previsão de parâmetros térmicos ambientais dentro de modelos físicos em escala reduzida de alojamentos avícolas. Interciencia 2011, 36, 738–742. Available online: https://www.researchgate.net/publication/291497349 (accessed on 30 October 2024).
- de Castro, A.C.; da Silva, I.J.O.; Nazareno, A.C.; Nunes, M.L.A.; Piedade, S.M.d.S. Thermal Efficiency of Different Coverage Materials in Reduced Models of Animal Husbandry Facilities: A Case Study. Eng. Agrícola 2017, 37, 403–413. [Google Scholar] [CrossRef]
- Jentzsch, R.; Baêta, F.C.; Tinôco, I.F.F.; Damasceno, F.A.; Saraz, J.A.O. Parâmetros Arquitetônico-Ambientais para Construção e Testes em Modelos Reduzidos, Representativos de Galpões Avícolas, com Base em Similitude. Rev. Eng. Agric. 2013, 21, 19–30. [Google Scholar] [CrossRef]
- Murphy, G. Similitude in Engineering; The Tonald Press Company: New York, NY, USA, 1950. [Google Scholar]
- Bôas, R.L.V.; de Godoy, L.J.G.; Backes, C.; Santos, A.J.M.D.; Carribeiro, L.S. Sod production in Brazil. Ornam. Hortic. 2020, 26, 516–522. [Google Scholar] [CrossRef]
- Martin, P.M. The potential of native grasses for use as managed turf. In Proceedings of the 4th International Crop Science Congress; CDROM: Brisbane, Australia, 2004; p. 13. Available online: https://www.cropscience.org.au (accessed on 25 October 2024).
- Associação Nacional Grama Legal, Grama Esmeralda—Zoysia Japônica 2024. Available online: https://gramalegal.com/grama-esmeralda (accessed on 24 October 2024).
- Rodríguez, J.; Vilela, K. Influence of the Types of Grass of Green Roofs for the Design of Thermal Comfort in Buildings. J. Ecol. Eng. 2022, 23, 223–229. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Fao, M.S.; Rome, U. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- INMET. 2022. Available online: https://tempo.inmet.gov.br/TabelaEstacoes/A510 (accessed on 19 July 2022).
- Madeira, A.P.; Beneditto, D.; Doutor, S.S.; Zoologia, E. Necessidades hídricas das gramas batatais (Paspalum notatum Flüggé) e esmeralda (Zoysia Japônica Steud)estimadas por sensoriamento remoto. Braz. J. Dev. 2021, 6, 73015–73024. [Google Scholar]
- Silva, E.T.d.; Leite, D.G.; Yuri, F.M.; Nery, F.d.S.G.; Rego, J.C.C.; Zanatta, R.d.A.; Santos, S.A.d.; Moura, V.V. Determinação do Índice de Temperatura e Umidade (ITU) para produção de aves na mesorregião metropolitana de Curitiba—PR. Rev. Acadêmica Ciências Agrárias Ambient. 2004, 2, 47–60. [Google Scholar]
- Sampaio, C.A.P.; Cardoso, C.O.; Souza, G.P. Temperatura superficiais de telhas e sua relação com o ambiente térmico. Eng. Agric. 2011, 31, 1–11. [Google Scholar] [CrossRef]
- Oliveira, R.F.M.; Donzele, J.L.; De Abreu, M.L.T.; Ferreira, R.A.; Vaz, R.G.M.V.; Cella, P.S. Effects of temperature and relative humidity on performance and yield of noble cuts of broilers from 1 to 49 days old. Rev. Bras. Zootec. 2006, 35, 797–803. [Google Scholar] [CrossRef]
- Oliveira, C.P.; de Sousa, F.C.; Dallago, G.M.; Silva, J.R.; Campos, P.H.R.F.; Guimarães, M.C.d.C.; Baêta, F.d.C. Thermal Environment and Animal Comfort of Aviary Prototypes with Photovoltaic Solar Panel on the Roof. Energies 2023, 16, 2504. [Google Scholar] [CrossRef]
- Brauer-Vigoderis, R.; Ferreira-Tinôco, I.D.F.; Pandorfi, H.; Bastos-Cordeiro, M.; De Souza-Júnior, J.P.; De Carvalho-Guimarães, M.C. Effect of heating systems in litter quality in broiler facilities in winter conditions. Dyna 2014, 81, 36. [Google Scholar] [CrossRef]
- Carvalho, F.B.; Sartori, J.R.; Pezzato, A.C.; Fascina, V.B.; Castelo, P.G.; De Souza, I.M.G.P. Environmental temperature and broiler age on corn energy value. Ciência Anim. Bras. 2021, 22, e65526. [Google Scholar] [CrossRef]
- Santos, W.M.M. Índices de Conforto e Desconforto Térmico Humano segundo os Cenários Climáticos Do IPCC; Congresso Brasileiro de Meteorologia: Belém, Brazil, 2010; p. 16. [Google Scholar]
- de Souza, D.M.; Nery, J.T. O conforto térmico na perspectiva da Climatologia Geográfica. GEOGRAFIA 2012, 21, 65–83. [Google Scholar] [CrossRef]
- Santos, G.; Miranda, B.; Diniz, F.R.; Da Silva, M.P. Avaliação e comparação do índice de conforto térmico humano entre as cidades de São Paulo (SP) e Bauru (SP). J. Contrib. 2017, 1–5. [Google Scholar] [CrossRef]
- TEAM, R.C.R. R: A Language and Environment for Statistical Computing, 4.0.4 Los ed.; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Tinôco, I. Avicultura Industrial: Novos Conceitos de Materiais, Concepções e Técnicas Construtivas Disponíveis para Galpões Avícolas Brasileiros. Rev. Bras. Cienc. Avic. 2001, 3, 1–26. [Google Scholar] [CrossRef]
- Collier, R.J.; Gebremedhin, K.G. Thermal Biology of Domestic Animals. Annu. Rev. Anim. Biosci. 2015, 3, 513–532. [Google Scholar] [CrossRef]
- Pereira, F.; Ferreira, J.C.; Campos, A.T.; Ferreira, P.; Ferraz, P.; Bahuti, M.; Junior, T.Y.; Da Silva, J.P.; Ferreira, S.C. Dynamics of the Thermal Environment in Climate-Controlled Poultry Houses for Broiler Chickens. Agriengineering 2024, 6, 3891–3911. [Google Scholar] [CrossRef]
- Michels, C.; Güths, S.; Marinoski, D.L.; Lamberts, R. Thermal performance and thermal resistance of fibre cement roof tiles: Experimental study. Energy Build. 2021, 231, 110569. [Google Scholar] [CrossRef]
- Rivero, R. Arquitetura e Clima: Acondicionamento Térmico Natural, 2nd ed.; Rev. e Ampl.: Porto Alegre, RS, Brazil, 1986. [Google Scholar]
- Verbeke, S.; Audenaert, A. Thermal inertia in buildings: A review of impacts across climate and building use. Renew. Sustain. Energy Rev. 2018, 82, 2300–2318. [Google Scholar] [CrossRef]
- Barnabé, J.M.C.; Pandorfi, H.; de Almeida, G.L.P.; Guiselini, C.; Jacob, A.L. Temperatura superficial de materiais utilizados para cobertura individual de bezerreiros. Rev. Bras. Eng. Agrícola Ambient. 2014, 18, 545–550. [Google Scholar] [CrossRef]
- Abreu, V.M.N.; de Abreu, P.G. Os desafios da ambiência sobre os sistemas de aves no Brasil. Rev. Bras. Zootec. 2011, 40, 1–14. [Google Scholar]
- Cândido, M.G.; Tinôco, I.D.F.; Pinto, F.D.A.D.C.; Santos, N.T.; Roberti, R.P. Determination of thermal comfort zone for early-stage broilers. Eng. Agrícola 2016, 36, 760–767. [Google Scholar] [CrossRef]
- Faggianelli, G.A.; Brun, A.; Wurtz, E.; Muselli, M. Natural cross ventilation in buildings on Mediterranean coastal zones. Energy Build. 2014, 77, 206–218. [Google Scholar] [CrossRef]
- Pragati, S.; Priya, R.S.; Pradeepa, C.; Senthil, R. Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate. Sustainability 2023, 15, 2006. [Google Scholar] [CrossRef]
- Santos, G.D.B.; Sousa, I.F.D.; Brito, C.O.; Santos, V.D.S.; Barbosa, R.D.J.; Soares, C. Estudo bioclimático das regiões litorânea, agreste e semiárida do estado de Sergipe para a avicultura de corte e postura. Ciência Rural. 2014, 44, 123–128. [Google Scholar] [CrossRef]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Bueno, A.D. Transferência de Calor e Umidade em Telhas: Simulação e Análise Experimental. Doctoral Dissertation, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 1994. [Google Scholar]
- Ferreira, R.A. Maior Produção com Melhor Ambiente Para aves, Suínos e Bovinos; Aprenda Fácil: Viçosa, Brazil, 2005. [Google Scholar]
- Passini, R.; de Araújo, M.A.G.; Yasuda, V.M.; Almeida, E.A. Intervenção ambiental na cobertura e ventilação artificial sobre índices de conforto para aves de corte. Rev. Bras. Eng. Agrícola Ambient. 2013, 17, 333–338. [Google Scholar] [CrossRef]
Day | ETc (mm) | Water Demand (L·m−2·dia−1) | Precipitation (mm) |
---|---|---|---|
1 | 4.51 | 40.59 | 0.20 |
2 | 4.35 | 39.15 | 0.00 |
3 | 4.23 | 38.07 | 0.00 |
4 | 4.39 | 39.51 | 0.00 |
5 | 4.55 | 40.95 | 8.40 |
6 | 4.46 | 40.14 | 0.40 |
7 | 4.22 | 37.98 | 0.00 |
8 | 4.81 | 43.29 | 0.00 |
9 | 4.53 | 40.77 | 0.00 |
10 | 4.45 | 40.05 | 0.00 |
11 | 4.55 | 40.95 | 0.00 |
12 | 4.50 | 40.50 | 0.00 |
13 | 4.29 | 38.61 | 0.20 |
14 | 4.55 | 40.95 | 0.20 |
15 | 3.29 | 29.61 | 1.40 |
16 | 4.50 | 40.50 | 0.00 |
Coverture Material | Emissivity (£) |
---|---|
Ceramic tile | 0.85–0.95 |
Fiber Cement Roof Tile | 0.92 |
Metal Roof Tile | 0.25 |
Green Roof (Grass) | 0.90 |
Comfort Range | Week of Life | Authors | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Air temperature (°C) | 32.3–35.0 | 26.4–32.0 | 21.6–29.0 | 21.6–26.0 | 20.0–23.0 | Silva et al. [51] and Oliveira et al. [53] |
Relative humidity (%) | 56.90 | 64.40 | 68.50 | 68.50 | 69.20 | Oliveira et al. [53] |
THI | 72.4–80.0 | 68.4–76.0 | 64.5–72.0 | 60.5–68.0 | 56.6–64.0 | Silva et al. [51] |
BGHI | 81.30 | 74.90 | 69.80 | 69.80 | 68.70 | Oliveira et al. [53] |
HCI | 20.0–29.0 * | Santos [57], Souza et al. [58] and Santos et al. [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.A.d.; Sousa, F.C.d.; Silva, A.L.d.; Soares, T.C.; Oliveira, C.P.; Vigoderis, R.B.; Baêta, F.d.C.; Tinôco, I.d.F.F. Effect of Green Roofs on the Thermal Environment of Prototype Broiler Houses. AgriEngineering 2025, 7, 16. https://doi.org/10.3390/agriengineering7010016
Souza MAd, Sousa FCd, Silva ALd, Soares TC, Oliveira CP, Vigoderis RB, Baêta FdC, Tinôco IdFF. Effect of Green Roofs on the Thermal Environment of Prototype Broiler Houses. AgriEngineering. 2025; 7(1):16. https://doi.org/10.3390/agriengineering7010016
Chicago/Turabian StyleSouza, Maria Angela de, Fernanda Campos de Sousa, Alex Lopes da Silva, Thauane Cordeiro Soares, Charles Paranhos Oliveira, Ricardo Brauer Vigoderis, Fernando da Costa Baêta, and Ilda de Fátima Ferreira Tinôco. 2025. "Effect of Green Roofs on the Thermal Environment of Prototype Broiler Houses" AgriEngineering 7, no. 1: 16. https://doi.org/10.3390/agriengineering7010016
APA StyleSouza, M. A. d., Sousa, F. C. d., Silva, A. L. d., Soares, T. C., Oliveira, C. P., Vigoderis, R. B., Baêta, F. d. C., & Tinôco, I. d. F. F. (2025). Effect of Green Roofs on the Thermal Environment of Prototype Broiler Houses. AgriEngineering, 7(1), 16. https://doi.org/10.3390/agriengineering7010016