Applying Paraconsistent Annotated Logic Eτ for Optimizing Broiler Housing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Paraconsistent Annotated Evidential Logic Eτ
3. Results
3.1. Boxplot of the Variables from the Paraconsistent Results
Paraconsistent Results
3.2. Pearson Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawkins, M.; Donnelly, C.A.; Jones, T.A. Chicken welfare is influenced more by housing conditions than by stocking density. Nature 2004, 427, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Fancher, C.; Zhang, L.; Kiess, A.; Adhikari, P.A.; Dinh, T.T.; Sukumaran, A.T. Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler production and potential solutions. Microorganisms 2020, 8, 1533. [Google Scholar] [CrossRef] [PubMed]
- ABPA. Brazilian Association of Animal Protein. Annual Report 2023. Available online: https://abpa-br.org/wp-content/uploads/2023/04/ABPA.-Annual-Report-2023.pdf (accessed on 3 April 2024).
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Lu, Y.; Lan, R. Chitosan oligosaccharide as an effective feed additive to maintain growth performance, meat quality, muscle glycolytic metabolism, and oxidative status in yellow-feather broilers under heat stress. Poult. Sci. 2020, 99, 4824–4831. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.M.; Viola, M.R.; Alvarenga, L.A.; de Mello, C.R.; Chou, S.C.; de Oliveira, V.A.; Uddameri, V.; Morais, M.A.V. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome. Int. J. Climatol. 2020, 40, 2511–2526. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Moura, D.J.; Nääs, I.A.; Pereira, D.F.; Silva, R.; Camargo, G. Animal welfare concepts and strategy for poultry production: A review. Braz. J. Poult. Sci. 2006, 8, 137–147. [Google Scholar] [CrossRef]
- Pereira, D.F.; Nääs, I.A. Estimating the thermoneutral zone for broiler breeders using behavioral analysis. Comput. Electron. Agric. 2008, 62, 2–7. [Google Scholar] [CrossRef]
- Nascimento, G.R.; Nääs, I.A.; Pereira, D.F.; Baracho, M.S.; Garcia, R. Assessment of broiler surface temperature variation when exposed to different air temperatures. Braz. J. Poul. Sci. 2011, 13, 259–263. [Google Scholar] [CrossRef]
- Johnson, J.S.; Abuajamieh, M.; Fernandez, M.V.S.; Seibert, J.T.; Stoakes, S.K.; Nteeba, J.; Keating, A.F.; Ross, J.W.; Rhoads, R.P.; Baumgard, L. Thermal Stress Alters Postabsorptive Metabolism During Pre- and Postnatal Development. In Climate Change Impact on Livestock: Adaptation and Mitigation; Sejian, V., Gaughan, J., Baumgard, L., Prasad, C., Eds.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Souza, A.V.; Abreu, M.T.; Mesquita, N.F.; Ferreira, R.A. How much does heat stress cost in poultry and swine production? Nutritime 2020, 17, 1–7. Available online: https://www.nutritime.com.br/wp-content/uploads/2020/01/Artigo-508.pdf (accessed on 20 February 2024).
- García, M.C.; León, C.; Delgado, M.D. Characteristics of Broiler Litter Using Different Types of Materials (Straw, Wood Shavings and Rice Hulls). A Castilla y Leon (Spain) Case Study. In Proceedings of the International Symposium on Air Quality and Waste Management for Agriculture, Broomfield, CO, USA, 16–19 September 2007. [Google Scholar]
- Zhang, M.H.; Li, S.Y. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genet. Mol. Res. 2015, 14, 3160–3169. [Google Scholar] [CrossRef]
- Miles, D.M.; Branton, S.L.; Lott, B.D. Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poult. Sci. 2004, 83, 1650–1654. [Google Scholar] [CrossRef] [PubMed]
- Al Homidan, A.; Robertson, J.F.; Petchey, A.M. Review of the effect of ammonia and dust concentrations on broiler performance. Worlds Poult. Sci. J. 2003, 59, 340–349. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Kpomasse, C.C.; Oke, O.; Houndonougbo, F.; Tona, K. Broiler production challenges in the tropics: A review. Vet. Med. Sci. 2021, 7, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Mangan, M.; Siwek, M. Strategies to combat heat stress in poultry production—A review. J. Anim. Physiol. Anim. Nutr. 2024, 1, 20. [Google Scholar] [CrossRef]
- Jackman, P.; Penya, H.; Ross, R. The role of information and communication technology in poultry broiler production process control. Agric. Eng. Int. CIGR J. 2020, 22, 284–299. [Google Scholar]
- Abe, J.M. Paraconsistent Intelligent Based-Systems: New Trends in the Applications of Paraconsistency; Springer: Dordrecht, The Netherlands, 2015; p. 306. [Google Scholar]
- Abe, J.M.; Akama, S.; Nakamatsu, K. Introduction to Annotated Logics-Foundations for Paracomplete and Paraconsistent Reasoning, 1st ed.; Springer: Dordrecht, The Netherlands, 2015; p. 190. [Google Scholar]
- Abe, J.M.; Nakamatsu, K.; da Silva Filho, J.I. Three decades of paraconsistent annotated logics: A review paper on some applications. Procedia Comput. Sci. 2019, 159, 1175–1181. [Google Scholar] [CrossRef]
- Da Silva, J.P.; Nääs, I.A.; Abe, J.M.; Cordeiro, A.F.d.S. Classification of piglet (Sus Scrofa) stress conditions using vocalization pattern and applying paraconsistent logic Eτ. Comput. Electron. Agric. 2019, 166, 105020. [Google Scholar] [CrossRef]
- Fonseca, F.N.; Abe, J.M.; Nääs, I.A.; Cordeiro, A.F.d.S.; Amaral, F.V.D.; Ungaro, H.C. Automatic prediction of stress in piglets (Sus Scrofa) using infrared skin temperature. Comput. Electron. Agric. 2019, 168, 105–148. [Google Scholar] [CrossRef]
- Martinez, A.A.G.; Nääs, I.d.A.; de Carvalho-Curi, T.M.R.; Abe, J.M.; da Silva Lima, N.D. A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability. Animals 2021, 11, 2780. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An overview of the current trends in precision pig farming technologies. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, J.; Liu, Z.; Hu, B.; Wang, M.; Pu, S. Prediction of ammonia concentration in a pig house based on machine learning models and environmental parameters. Animals 2022, 13, 165. [Google Scholar] [CrossRef]
- Xie, Q.; Zheng, P.; Bao, J.; Su, Z. Thermal environment prediction and validation based on deep learning algorithm in closed 611 pig house. Trans. Chin. Soc. Agric. Mach. 2020, 51, 353–361. [Google Scholar]
- Zamansky, A. On recent applications of paraconsistent logic: An exploratory literature review. J. Appl. Non-Class. Log. 2019, 29, 382–391. [Google Scholar] [CrossRef]
- da Costa, N.C.; Béziau, J.Y.; Bueno, O.A. Aspects of paraconsistent logic. Log. J. IGPL 1995, 3, 597–614. [Google Scholar] [CrossRef]
- Cobb. Broiler Management Guide. Cobb-Vantress. Available online: www.Cobb-vantress.com/contactus/brochures/Broiler_Mgmt_Guide_2008.pdf (accessed on 10 December 2023).
- Carvalho-Curi, T.M.R.D.; Conti, D.; Vercellino, R.D.A.; Massari, J.M.; de Moura, D.J.; de Souza, Z.M.; Montanari, R. Positioning of sensors for control of ventilation systems in broiler houses: A case study. Sci. Agric. 2017, 74, 101–109. [Google Scholar] [CrossRef]
- Yahav, S.; Goldfeld, S.; Plavnik, I.; Hurwitz, S. Physiological response of chickens and turkeys to relative humidity during exposure to high ambient temperature. J. Therm. Biol. 1995, 20, 245–253. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Chambers, B.J.; Walker, A.W. Ammonia emissions from broiler litter and laying hen manure management systems. Biosyst. Eng. 2004, 89, 175–185. [Google Scholar] [CrossRef]
- Figueiredo, E.A.P. Broiler Production; EMBRAPA: Concórdia, Brazil, 2003; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1148818/1/final10028.pdf (accessed on 17 January 2024).
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Albright, L.D. Environment Control for Animals and Plants; American Society of Agricultural Biological Engineers, ASABE: St. Joseph, MO, USA, 1990; p. 450. [Google Scholar]
- ASHRAE. Handbook of Fundamentals; ASHRAE: Atlanta, GA, USA, 2001. [Google Scholar]
- Li, Z.; Yang, Y.; Li, L.; Wang, D. A weighted Pearson correlation coefficient based multi-fault comprehensive diagnosis for battery circuits. J. Energy Storage 2023, 60, 106584. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Naz, S.; Hammad Ullah, H.; Ullah, Q.; Laudadio, V.; Qudratullah; Bozzo, G.; Tufarelli, V. Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim. Biotechnol. 2021, 34, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, M.A.; He, J.H.; He, S.P.; Adebowale, T. The implication of lighting programmes in intensive broiler production system. World Poultry Sci. J. 2019, 1, 17–28. [Google Scholar] [CrossRef]
- Donkoh, A. Ambient temperature: A factor affecting performance and physiological response of broiler chickens. Int. J. Biometeorol. 1989, 33, 259–265. [Google Scholar] [CrossRef] [PubMed]
House | MWG (g) | FC | Mort (%) |
---|---|---|---|
1 | 2565 | 1.55 | 4.7 |
2 | 2498 | 1.58 | 3.0 |
3 | 2318 | 1.71 | 3.7 |
4 | 2408 | 1.65 | 2.6 |
Age (Day) | Classification * | DBT (°C) | RH (%) | AV (m/s) | NH3 (ppm) | CO2 (ppm) | Source |
---|---|---|---|---|---|---|---|
1–7 | Excellent | 32–34 | 50–70 | 0.11–0.25 | 5 | 1500–2500 | [9,10,13,15,16,26,33,34,35,36] |
Good | 30–33 | 40–50 or 70–89 | 0.26–0.30 | 6–10 | 2500–3000 | ||
Acceptable | 28–29 | 30–41 | 0.05–0.10 | 11–15 | 2500–3000 | ||
Poor | 26–30 | 20–29 or 90–95 | <0.30 | 16–20 | >3000 | ||
Unacceptable | <26 or >35 | <20 or >95 | >0.30 | >20 | >3000 | ||
8–20 | Excellent | 29–31 | 50–70 | 0.11–0.25 | 5 | 1500–2500 | |
Good | 27–29 or 31–33 | 40–50 or 70–89 | 0.26–0.30 | 6–10 | 2500–3000 | ||
Acceptable | 25–27 or 33–35 | 30–41 | 0.05–0.10 | 11–15 | 2500–3000 | ||
Poor | 23–25 or 35–37 | 20–29 or 90–95 | <0.30 | 16–20 | >3000 | ||
Unacceptable | <23 or >37 | <20 or >95 | >0.30 | >20 | >3000 | ||
21–42 | Excellent | 21–23 | 60–70 | 0.80–3.00 | 5 | 1500–2500 | |
Good | 19–21 or 23–25 | 40–59 or 71–89 | 2.90–1.00 | 6–10 | 2500–3000 | ||
Acceptable | 17–19 or 25–27 | 30–41 | 0.90–0.70 | 11–15 | 2500–3000 | ||
Poor | 15–17 or 27–29 | 20–29 or 90–95 | <0.69 | 16–20 | >3000 | ||
Unacceptable | <15 or >29 | <20 or >95 | <0.5 | >20 | >3000 |
At 42 Days Old-House | Broilers Housed | Mortality (%) | Broilers at Slaughter | Weight at Slaughter (g) | MCR (g) | MWG (g) | FC | V (%) | PI |
---|---|---|---|---|---|---|---|---|---|
House 1 | 21,500 | 5.25 | 20,361 | 2607 | 3974 | 2565 | 1.55 | 94.7 | 379,413 |
House 2 | 29,000 | 4.89 | 27,743 | 2540 | 3957 | 2498 | 1.58 | 95.67 | 365,230 |
House 3 | 44,500 | 2.27 | 43,375 | 2360 | 3957 | 2318 | 1.71 | 97.47 | 320,841 |
House 4 | 35,500 | 3.58 | 34,435 | 2450 | 3957 | 2408 | 1.65 | 96.57 | 343,035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, A.A.G.; de Alencar Nääs, I.; de Carvalho-Curi, T.M.R.; Abe, J.M. Applying Paraconsistent Annotated Logic Eτ for Optimizing Broiler Housing Conditions. AgriEngineering 2024, 6, 1252-1265. https://doi.org/10.3390/agriengineering6020071
Martinez AAG, de Alencar Nääs I, de Carvalho-Curi TMR, Abe JM. Applying Paraconsistent Annotated Logic Eτ for Optimizing Broiler Housing Conditions. AgriEngineering. 2024; 6(2):1252-1265. https://doi.org/10.3390/agriengineering6020071
Chicago/Turabian StyleMartinez, Angel Antonio Gonzalez, Irenilza de Alencar Nääs, Thayla Morandi Ridolfi de Carvalho-Curi, and Jair Minoro Abe. 2024. "Applying Paraconsistent Annotated Logic Eτ for Optimizing Broiler Housing Conditions" AgriEngineering 6, no. 2: 1252-1265. https://doi.org/10.3390/agriengineering6020071
APA StyleMartinez, A. A. G., de Alencar Nääs, I., de Carvalho-Curi, T. M. R., & Abe, J. M. (2024). Applying Paraconsistent Annotated Logic Eτ for Optimizing Broiler Housing Conditions. AgriEngineering, 6(2), 1252-1265. https://doi.org/10.3390/agriengineering6020071