RisDes_Index: An Index for Analysing the Advance of Areas Undergoing Desertification Using Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Data In Situ Collected from the Experimental Sites
2.3. Collecting and Processing the Orbital Data from the Experimental Sites
2.4. Satellite Products from the Experimental Sites
2.5. Vegetation and Soil Indices from the Experimental Sites
2.6. Exploratory Analysis of the Data
2.7. Association between the Satellite Products and the In Situ Data from the Experimental Sites
2.8. Proposal for the Model
2.9. Intercomparison between Methods and Evolution of the Desertification Process: A Case Study
3. Results
3.1. Exploratory Data Analysis
3.2. Associating the Orbital Data with the In Situ Data
3.3. Identifying Areas under Desertification
3.4. Intercomparison between the RisDes_Index and the Other Methods Using Satellite Products
3.5. Vegetation Indicators and Evolution of the Desertification Process in the DN of Cabrobó
3.6. Association between the Progress of Desertification, Climate, and Socio-Economic Data
4. Discussion
5. Conclusions
Software Availability
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joseph, O.; Gbenga, A.E.; Langyit, D.G. Desertification Risk Analysis and Assessment in Northern Nigeria. Remote Sens. Appl. Soc. Environ. 2018, 11, 70–82. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Tsesmelis, D.E.; Oikonomou, P.D.; Kairis, O.; Kosmas, C.; Fassouli, V.; Ritsema, C.; Hessel, R.; Jetten, V.; Moustakas, N.; et al. A Desertification Risk Assessment Decision Support Tool (DRAST). CATENA 2020, 187, 104413. [Google Scholar] [CrossRef]
- Li, S.; He, S.; Xu, Z.; Liu, Y.; von Bloh, W. Desertification Process and Its Effects on Vegetation Carbon Sources and Sinks Vary under Different Aridity Stress in Central Asia during 1990–2020. CATENA 2023, 221, 106767. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef]
- Akbari, M.; Shalamzari, M.J.; Memarian, H.; Gholami, A. Monitoring Desertification Processes Using Ecological Indicators and Providing Management Programs in Arid Regions of Iran. Ecol. Indic. 2020, 111, 106011. [Google Scholar] [CrossRef]
- Rivera-Marin, D.; Dash, J.; Ogutu, B. The Use of Remote Sensing for Desertification Studies: A Review. J. Arid Environ. 2022, 206, 104829. [Google Scholar] [CrossRef]
- Vasconcelos Sobrinho, J. Processos de Desertificação No Nordeste Do Brasil: Sua Gênese e Sua Contenção; SEMA/SUDENE: Recife, Brazil, 1982. [Google Scholar]
- de Oliveira Silva, A.K.; de Barros Silva, H.P. O Processo de Desertificação e Seus Impactos Sobre Os Recursos Naturais e Sociais No Município de Cabrobó—Pernambuco—Brasil. PRACS Rev. Eletrônica Humanid. Curso Ciênc. Sociais UNIFAP 2015, 8, 203–215. [Google Scholar]
- Perez-Marin, A.M.; Cavalcante, A.M.B.; Medeiros, S.S.; Tinôco, L.B.M.; Salcedo, I.H. Núcleos de Desertificação No Semiárido Brasileiro: Ocorrência Natural Ou Antrópica? Parcerias Estratégicas 2012, 17, 87–106. [Google Scholar]
- Leite, A.C.d.S.; Bezerra, U.A.; de Oliveira, L.M.M. Behavior of the Albedd and NDVI in the Gilbués–Piauí (Brazil) Desertification Core, Using Landsat Satellite Images. Rev. Bras. Meio Ambient. 2019, 7, 19–28. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, X.; Lei, J.; Meng, X.; Zhou, N. Analysis of Spatiotemporal Changes and Driving Factors of Desertification in the Africa Sahel. CATENA 2022, 213, 106213. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Guan, Q.; Zhang, J.; Yang, X.; Liu, Z. Environmental Sensitivity Assessment of Land Desertification in the Hexi Corridor, China. CATENA 2023, 220, 106728. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Tomasella, J.; Alvalá, R.C.S.; Sestini, M.F.; Affonso, A.G.; Rodriguez, D.A.; Barbosa, A.A.; Cunha, A.P.M.A.; Valles, G.F.; Crepani, E.; et al. Identifying Areas Susceptible to Desertification in the Brazilian Northeast. Solid Earth 2015, 6, 347–360. [Google Scholar] [CrossRef]
- Ferreira, T.R.; di Pace, F.T.; da Silva, B.B.; Delgado, J.R. Identification of Desertification-Sensitive Areas in the Brazilian Northeast through Vegetation Indices. Eng. Agríc. 2017, 37, 1190–1202. [Google Scholar] [CrossRef]
- de Araújo, J.A.; de Souza, R.F. Abordagens Sobre o Processo de Desertificação: Uma Revisão Das Evidências No Rio Grande Do Norte. Geosul 2017, 32, 122–143. [Google Scholar] [CrossRef]
- Zongfan, B.; Ling, H.; Xuhai, J.; Ming, L.; Liangzhi, L.; Huiqun, L.; Jiaxin, L. Spatiotemporal Evolution of Desertification Based on Integrated Remote Sensing Indices in Duolun County, Inner Mongolia. Ecol. Inform. 2022, 70, 101750. [Google Scholar] [CrossRef]
- dos Santos, W.R.; Jardim, A.M.d.R.F.; de Souza, C.A.A.; de Souza, L.S.B.; da Silva, G.Í.N.; de Morais, J.E.F.; da Silva, M.J.; Alves, C.P.; Montenegro, A.A.d.A.; da Silva, T.G.F. Carbon and Nutrient Dynamics in Landscapes under Different Levels of Anthropogenic Intervention in the Semi-Arid Region of Brazil. Agric. Ecosyst. Environ. 2024, 368, 109020. [Google Scholar] [CrossRef]
- Oikonomou, P.D.; Tsesmelis, D.E.; Waskom, R.M.; Grigg, N.S.; Karavitis, C.A. Enhancing the Standardized Drought Vulnerability Index by Integrating Spatiotemporal Information from Satellite and in Situ Data. J. Hydrol. 2019, 569, 265–277. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An Unable Evasive Process in Fighting against Desertification for the Sustainable Development of Arid and Semiarid Regions of China. CATENA 2019, 179, 197–209. [Google Scholar] [CrossRef]
- Kosmas, C.; Ferrara, A.; Briasouli, H.; Imeson, A. The Medalus Project: Mediterranean Desertification and Land Use: Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; European Communities: Luxembourg, 1999. [Google Scholar]
- Salvati, L.; Bajocco, S.; Ceccarelli, T.; Zitti, M.; Perini, L. Towards a Process-Based Evaluation of Land Vulnerability to Soil Degradation in Italy. Ecol. Indic. 2011, 11, 1216–1227. [Google Scholar] [CrossRef]
- Gad, A.; Lotfy, I. Use of Remote Sensing and GIS in Mapping the Environmental Sensitivity Areas for Desertification of Egyptian Territory. eEarth Discuss. 2008, 3, 41–85. [Google Scholar] [CrossRef]
- Verón, S.R.; Blanco, L.J.; Texeira, M.A.; Irisarri, J.G.N.; Paruelo, J.M. Desertification and Ecosystem Services Supply: The Case of the Arid Chaco of South America. J. Arid Environ. 2018, 159, 66–74. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 1614. [Google Scholar] [CrossRef]
- Pan, J.; Li, T. Extracting Desertification from Landsat TM Imagery Based on Spectral Mixture Analysis and Albedo-Vegetation Feature Space. Nat. Hazards 2013, 68, 915–927. [Google Scholar] [CrossRef]
- Soares, D.B.; Nóbrega, R.S.; Filho, F.d.O.M. Sobre o Processo de Desertificação. Rev. Bras. Geogr. Física 2011, 4, 174–188. [Google Scholar] [CrossRef]
- de Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; Jardim, A.M.d.R.F.; de Souza, C.A.A.; Araújo Júnior, G.d.N.; de Morais, J.E.F.; de Souza, L.S.B. Spatial and Temporal Dynamics of Soil Moisture for Surfaces with a Change in Land Use in the Semi-Arid Region of Brazil. CATENA 2020, 188, 104457. [Google Scholar] [CrossRef]
- de Souza, C.A.A.; da Silva, T.G.F.; de Souza, L.S.B.; de Moura, M.S.B.; Silva, P.P.; Marin, F.R. Straw Management Effects on Sugarcane Growth, Nutrient Cycling and Water Use in the Brazilian Semiarid Region. Bragantia 2020, 79, 525–533. [Google Scholar] [CrossRef]
- Sun, G.; Noormets, A.; Gavazzi, M.J.; McNulty, S.G.; Chen, J.; Domec, J.C.; King, J.S.; Amatya, D.M.; Skaggs, R.W. Energy and Water Balance of Two Contrasting Loblolly Pine Plantations on the Lower Coastal Plain of North Carolina, USA. For. Ecol. Manage. 2010, 259, 1299–1310. [Google Scholar] [CrossRef]
- Jardim, A.M.R.F.; Morais, J.E.F.; Souza, L.S.B.d.; Souza, C.A.A.; Araújo Júnior, G.N.; Alves, C.P.; Silva, G.I.N.; Leite, R.M.C.; Moura, M.S.B.; Lima, J.L.M.P.; et al. Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea Cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. Plants 2023, 12, 2562. [Google Scholar] [CrossRef]
- da Silva, T.G.F.; de Moura, M.S.B.; Zolnier, S.; Soares, J.M.; de Souza, L.S.B.; Brandão, E.O. Variação Do Balanço de Radiação e de Energia Da Cana-de-Açúcar Irrigada No Semiárido Brasileiro. Rev. Bras. Eng. Agríc. Ambient. 2011, 15, 139–147. [Google Scholar] [CrossRef]
- da Silva, T.G.F.; de Queiroz, M.G.; Zolnier, S.; de Souza, L.S.B.; de Souza, C.A.A.; de Moura, M.S.B.; de Araújo, G.G.L.; Steidle Neto, A.J.; dos Santos, T.S.; de Melo, A.L.; et al. Soil Properties and Microclimate of Two Predominant Landscapes in the Brazilian Semiarid Region: Comparison between a Seasonally Dry Tropical Forest and a Deforested Area. Soil Tillage Res. 2021, 207, 104852. [Google Scholar] [CrossRef]
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. Banco de Dados Climáticos Do Brasil. Available online: https://www.bdclima.cnpm.embrapa.br/resultados/balanco.php?uf=&cod=141 (accessed on 25 February 2023).
- de Melo, M.V.N.; de Oliveira, M.E.G.; de Almeida, G.L.P.; Gomes, N.F.; Montalvo Morales, K.R.; Santana, T.C.; Silva, P.C.; Moraes, A.S.; Pandorfi, H.; da Silva, M.V. Spatiotemporal Characterization of Land Cover and Degradation in the Agreste Region of Pernambuco, Brazil, Using Cloud Geoprocessing on Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2022, 26, 100756. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B. Revised Landsat-5 TM Radiometrie Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Silva, B.B.; Braga, A.C.; Braga, C.C.; de Oliveira, L.M.M.; Montenegro, S.M.G.L.; Barbosa Junior, B. Procedures for Calculation of the Albedo with OLI-Landsat 8 Images: Application to the Brazilian Semi-Arid. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 3–8. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: London, UK, 1983. [Google Scholar]
- Starks, P.J.; Norman, J.M.; Blad, B.L.; Walter-Shea, E.A.; Walthall, C.L. Estimation of Shortwave Hemispherical Reflectance (Albedo) from Bidirectionally Reflected Radiance Data. Remote Sens. Environ. 1991, 38, 123–134. [Google Scholar] [CrossRef]
- Silva, B.B.; Lopes, G.M.; Azevedo, P.V. Balanço de Radiação Em Áreas Irrigadas Utilizando Imagens Landsat 5—TM. Rev. Bras. Meteorol. 2005, 20, 243–252. [Google Scholar]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Oliveira, L.M.M.; Montenegro, S.M.G.L.; Da Silva, B.B.; De Moura, A.E.S.S. Balanço de Radiação Por Sensoriamento Remoto Em Bacia Hidrográfica Da Zona Da Mata Nordestina. Rev. Bras. Meteorol. 2015, 30, 16–28. [Google Scholar] [CrossRef]
- Allen, R.; Waters, R.; Bastiaanssen, W.; Tasumi, M.; Trezza, R. SEBAL (Surface Energy Balance Algorithms for Land)—Idaho Implementation, Advanced Training and Users Manual, Version 1.0; Idaho Department of Water Resources: Boise, ID, USA, 2002. [Google Scholar]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote Sensing for Irrigated Agriculture: Examples from Research and Possible Applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation; Allen, R.G., Walter, I.A., Elliott, R.L., Howell, T.A., Itenfisu, D., Jensen, M.E., Snyder, R.L., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2005; ISBN 9780784408056. [Google Scholar]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Li, X.; Lei, S.; Cheng, W.; Liu, F.; Wang, W. Spatio-Temporal Dynamics of Vegetation in Jungar Banner of China during 2000–2017. J. Arid Land 2019, 11, 837–854. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Accioly, L.J.d.O.; Pachêco, A.; Costa, T.C.e.C.d.; Lopes, O.F.; Oliveira, M.A.J.d. Relações Empíricas Entre a Estrutura Da Vegetação e Dados Do Sensor TM/LANDSAT. Rev. Bras. Eng. Agríc. Ambient. 2002, 6, 492–498. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Thomsen, A. Evaluating Evapotranspiration Rates and Surface Conditions Using Landsat TM to Estimate Atmospheric Resistance and Surface Resistance. Remote Sens. Environ. 2002, 79, 329–343. [Google Scholar] [CrossRef]
- Silva, H.P.; Ribeiro, M.R.; de Luna Galindo, I.C.; Bezerra da Silva, H.D.; de Melo, A.L. Utilização de Técnicas de Sensoriamento Remoto Na Identificação de Áreas Sob Risco de Desertificação No Estado de Pernambuco. In Proceedings of the XV Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Curitiba, PR, Brasil, 30 April–5 May 2011; Universidade Federal de Roraima: Curitiba, Brazil, 2011; pp. 9144–9151. [Google Scholar]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of Topsoil Grain Size Index for Monitoring Desertification in Arid Land Using Remote Sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.; Miyatake, S. Tropical Forest Cover Density Mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Jardim, A.M.d.R.F.; da Silva, M.V.; Silva, A.R.; dos Santos, A.; Pandorfi, H.; de Oliveira-Júnior, J.F.; de Lima, J.L.M.P.; de Souza, L.S.B.; Araújo Júnior, G.d.N.; Lopes, P.M.O.; et al. Spatiotemporal Climatic Analysis in Pernambuco State, Northeast Brazil. J. Atmos. Solar-Terrestrial Phys. 2021, 223, 105733. [Google Scholar] [CrossRef]
- Xu, D.; Kang, X.; Qiu, D.; Zhuang, D.; Pan, J. Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale—A Case Study in the Ordos Plateau, China. Sensors 2009, 9, 1738–1753. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56, ISBN 9251042195. [Google Scholar]
- Wu, Z.; Lei, S.; Bian, Z.; Huang, J.; Zhang, Y. Study of the Desertification Index Based on the Albedo-MSAVI Feature Space for Semi-Arid Steppe Region. Environ. Earth Sci. 2019, 78, 232. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine Learning-Based Detection of Soil Salinity in an Arid Desert Region, Northwest China: A Comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, W.K.; Jeon, S.W.; Lee, J.Y.; Song, C.; Piao, D.; Lim, C.H.; Khaulenbek, A.; Navaandorj, I. Correlation between Desertification and Environmental Variables Using Remote Sensing Techniques in Hogno Khaan, Mongolia. Sustainability 2017, 9, 581. [Google Scholar] [CrossRef]
- da Silva, J.N.B.; da Silva, J.L.B.; dos Santos, A.M.; da Silva, A.C.; Galvíncio, J.D. Índice de Vegetação Como Subsídio Na Identificação de Áreas Com Potenciais a Desertificação. J. Environ. Anal. Prog. 2017, 2, 358–367. [Google Scholar] [CrossRef]
- Jiang, M.; Lin, Y. Desertification in the South Junggar Basin, 2000–2009: Part II. Model Development and Trend Analysis. Adv. Sp. Res. 2018, 62, 16–29. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Săvulescu, I.; Sîrodoev, I.; Bandoc, G.; Sfîcă, L. Spatial Assessment of Land Sensitivity to Degradation across Romania. A Quantitative Approach Based on the Modified MEDALUS Methodology. CATENA 2020, 187, 104407. [Google Scholar] [CrossRef]
Landsat | Sensor | Multispectral Band | Spectral Resolution | Spatial Resolution | Temporal Resolution | Imaged Area | Radiometric Resolution |
---|---|---|---|---|---|---|---|
5 | TM (Thematic Mapper) | Band 1— Visible (Blue) | 0.45–0.52 µm | 30 m | 16 days | 185 km | 8 bits |
Band 2— Visible (Green) | 0.52–0.60 µm | ||||||
Band 3— Visible (Red) | 0.63–069 µm | ||||||
Band 4— Near-Infrared (NIR) | 0.76–0.90 µm | ||||||
Band 5— Short-Wave Infrared (SWIR) | 1.55–1.75 µm | ||||||
Band 6— Thermal | 10.4–12.5 µm | 120 m | |||||
Band 7— Mid-Infrared (MIR) | 2.08–2.35 µm | 30 m | |||||
8 | OLI (Operational Land Imager) | Band 1— Coastal/Aerosol | 0.43–0.45 µm | 30 m | 16 days | 185 km | 12 bits |
Band 2— Visible (Blue) | 0.45–0.51 µm | ||||||
Band 3— Visible (Green) | 0.53–0.59 µm | ||||||
Band 4— Visible (Red) | 0.64–0.67 µm | ||||||
Band 5— Near-Infrared (NIR) | 0.85–0.88 µm | ||||||
Band 6— Short-Wave Infrared (SWIR 1) | 1.57–1.65 µm | ||||||
Band 7— Short-Wave Infrared (SWIR 2) | 2.11–2.29 µm | ||||||
Band 8— Panchromatic (PAN) | 0.50–0.68 µm | 15 m | |||||
Band 9— Cirrus | 1.36–1.39 µm | 30 m |
Landsat 8/OLI | Image | 1 | 2 | 3 | 4 |
Date | 1 January 2015 | 15 April 2015 | 2 September 2015 | 4 October 2015 | |
Image | 5 | 6 | 7 | 8 | |
Date | 20 October 2015 | 21 November 2015 | 7 December 2015 | 2 May 2016 | |
Image | 9 | 10 | 11 | 12 | |
Date | 20 September 2016 | 6 October 2016 * | 23 November 2016 | 24 December 2016 | |
Image | 13 | 14 | 15 | 16 | |
Date | 18 May 2017 | 6 March 2017 | 10 October 2017 | 23 December 2017 | |
Image | 17 | 18 | |||
Data | 22 June 2018 | 8 July 2018 | |||
Landsat 5/TM | Image | 1 | 2 | 3 | |
Date | 5 December 1991 * | 4 November 2001 * | 20 November 2009 * |
Interval | Class | |
---|---|---|
0.0 < RisDes_Index ≤ 0.33 | High level of desertification | Desertification |
0.33 < RisDes_Index ≤ 0.66 | Medium level of desertification | |
0.66 < RisDes_Index ≤ 1.0 | Low level of desertification | |
1.0 < RisDes_Index ≤ 3.0 | With some risk of desertification | |
3.0 < RisDes_Index ≤ 6.0 | No risk | |
RisDes_Index > 6.0 | No risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, T.G.F.d.; Cruz Neto, J.F.d.; Jardim, A.M.d.R.F.; Souza, C.A.A.d.; Araújo Júnior, G.d.N.; Silva, M.V.d.; Silva, J.L.B.d.; Carvalho, A.A.d.; Montenegro, A.A.d.A.; de Souza, L.S.B. RisDes_Index: An Index for Analysing the Advance of Areas Undergoing Desertification Using Satellite Data. AgriEngineering 2024, 6, 1150-1174. https://doi.org/10.3390/agriengineering6020066
Silva TGFd, Cruz Neto JFd, Jardim AMdRF, Souza CAAd, Araújo Júnior GdN, Silva MVd, Silva JLBd, Carvalho AAd, Montenegro AAdA, de Souza LSB. RisDes_Index: An Index for Analysing the Advance of Areas Undergoing Desertification Using Satellite Data. AgriEngineering. 2024; 6(2):1150-1174. https://doi.org/10.3390/agriengineering6020066
Chicago/Turabian StyleSilva, Thieres George Freire da, José Francisco da Cruz Neto, Alexandre Maniçoba da Rosa Ferraz Jardim, Carlos André Alves de Souza, George do Nascimento Araújo Júnior, Marcos Vinícius da Silva, Jhon Lennon Bezerra da Silva, Ailton Alves de Carvalho, Abelardo Antônio de Assunção Montenegro, and Luciana Sandra Bastos de Souza. 2024. "RisDes_Index: An Index for Analysing the Advance of Areas Undergoing Desertification Using Satellite Data" AgriEngineering 6, no. 2: 1150-1174. https://doi.org/10.3390/agriengineering6020066
APA StyleSilva, T. G. F. d., Cruz Neto, J. F. d., Jardim, A. M. d. R. F., Souza, C. A. A. d., Araújo Júnior, G. d. N., Silva, M. V. d., Silva, J. L. B. d., Carvalho, A. A. d., Montenegro, A. A. d. A., & de Souza, L. S. B. (2024). RisDes_Index: An Index for Analysing the Advance of Areas Undergoing Desertification Using Satellite Data. AgriEngineering, 6(2), 1150-1174. https://doi.org/10.3390/agriengineering6020066