Spatial Variability of Soil Resistance to Penetration in Fruit Cultivation in Eastern Amazonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition
2.3. Geostatistical Analysis
2.4. Kriging Mapping
3. Results
3.1. Geostatistical Parameters
3.2. Kriging Mapping
4. Discussion
4.1. Geostatistical Parameters
4.2. Kriging Mapping
5. Conclusions
- The papaya and cocoa intercropping area with planting time of three months was more susceptible to compaction at 3 months of age.
- The soil mechanical resistance to penetration was more critical in the layer of 40–60 cm for the two consortia evaluated, showing areas with possible restriction to plant growth.
- The maps showed the spatial variability of soil gravimetric moisture and resistance to soil penetration, showing the need for localized management for each planting area. Further studies are needed to evaluate the behavior of these attributes in time and space and how it interferes with the production of crops.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Plano Estratégico Para a Cultura do Mamoeiro 2017–2021; Embrapa Mandioca e Fruticultura—Documentos (INFOTECA–E); EMBRAPA: Brasilia, Brazil, 2019. [Google Scholar]
- FAOSTAT—Food and Agriculture Organization of the United Nations Statistics for 2021. Available online: http://www.fao.org/faostat/en/home (accessed on 30 April 2022).
- IBGE—Instituto Brasileiro de Geografia e Estatística (2021). Municipal Agricultural Production (MAP). Rio de Janeiro: IBGE.2021. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html (accessed on 20 January 2022).
- Molin, J.P.; Amaral, L.R.; Colaço, A. Precision Agriculture, 1st ed.; Oficina de Textos: São Paulo, Brazil, 2015; 224p. (In Portuguese) [Google Scholar]
- Gebler, L.; Grego, C.R.; Vieira, A.L.; da Kuse, L.R. Spatial influence of physical and chemical parameters on management zone definition in apple orchards. Eng. Agrícola 2015, 35, 1160–1171. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.S.M.; Silva, S.A.; Paiva, A.Q.; Sodré, G.A.; Lima, J.S.S. Variabilidade espacial da fertilidade de um solo cultivado com cacaueiro. Rev. Eng. Na Agric. 2018, 26, 178–189. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.V.N.; Almeida, G.L.P.; Batista, P.H.D.; Coutinho, A.S. Physical attributes of dystrophic Regolithic Neosol under pasture subjected to mechanized forage harvesting and animal grazing. Bol. De Indústria Anim. 2017, 74, 169–175. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.S.; Guimarães, E.C. Geostatistics and exploratory factor analysis for special representation of soil chemical attributes in coffee growing. Coffee Sci. 2016, 11, 195–203. [Google Scholar]
- Silva, F.J.; Oliveira, C.A.A.; Almeida, L.S.; Lima, L.P.; Guimarães, E.C. Spatial variability of soil resistance to penetration and corn yield. Rev. De Agric. Neotrop. 2017, 4, 77–84. (In Portuguese) [Google Scholar]
- Wiebke, N.; Schneidewind, U.; Armengot, L.; Adamtey, N.; Schneider, M.; Gerold, G. Spatial-temporal soil moisture dynamics under different cocoa production systems. Catena 2017, 158, 340–349. [Google Scholar]
- Banjare, R.; Sahu, G.D.; Minj, V. Effect of organic nutrition practices on quality parameters of papaya (Carica papaya L.) under Precision farming technique. Pharma Innov. 2022, 11, 618–619. [Google Scholar]
- Cavalcante, E.G.S.; Alves, M.C.; de Souza, Z.M.; Pereira, G.T. Variabilidade espacial de atributos físicos do solo sob diferentes usos e manejos. Rev. Bras. De Eng. Agrícola E Ambient. 2011, 15, 237–243. (In Portuguese) [Google Scholar] [CrossRef]
- Özkan, U.; Gökbulak, F. Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. Catena 2017, 1, 158–166. [Google Scholar] [CrossRef]
- Machado, J.; Shinohara, N.K.S.; Padilha, M.R.F.; Silva, K.E.; Barreto, T.S.C.P.; Silva, A.G.S.S. Precision agriculture: Technological programs in Brazil. Rev. Geama 2018, 4, 23–30. [Google Scholar]
- Vogel, G.F.; Martinkoski, L.; Grillo, J.F.; Michalovicz, L.; Fey, R. Evaluation of impact and electronic penetrometers in determin-ing mechanical resistance to soil penetration. Sci. Agrar. 2018, 18, 30–36. (In Portuguese) [Google Scholar]
- Freitas, L.; Oliveira, I.A.; Silva, L.S.; Frare, J.C.V.; Filla, V.A.; Gomes, R.P. Indicators of soil chemical and physical quality under different management systems. Unimar Ciências 2017, 26, 08–25. (In Portuguese) [Google Scholar]
- Dai, W.; Li, Y.; Fu, W.; Jiang, P.; Zhao, K.; Li, Y.; Penttinen, P. Spatial variability of soil nutrients in forest areas: A case study from subtropical China. J. Plant Nutr. Soil Sci. 2018, 181, 827–835. [Google Scholar] [CrossRef]
- Climate Data. Dados Climáticos de Marabá. Available online: https://pt.climatedata.org (accessed on 1 May 2022).
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Centro Nacional de Pesquisa de Solos. Manual de Métodos de Análise de Solo, 3rd. ed.; Embrapa: Rio de Janeiro, Brazil, 2017; 230p. [Google Scholar]
- Matheron, G. Principles of geoestatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field–Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Lopes, E.S.; Sampietro, J.A.; Lombardi, K.C.; Dias, A.N. Evaluation of moisture in soil compaction submitted to traffic of forest harvesting machines. Rev. Árvore 2011, 2, 659–667. (In Portuguese) [Google Scholar] [CrossRef]
- Soil, S.S. Soil Survey Manual, 18th ed.; USDA: Washington, DC, USA, 1993; 437p. [Google Scholar]
- Carvalho, M.P.; Takeda, E.Y.; Freddi, O.S. Spatial variability of attributes of a soil under vine in Vitória Brasil (SP). Rev. Bras. De Ciência Do Solo 2003, 27, 695–703. (In Portuguese) [Google Scholar] [CrossRef]
- Mion, R.L.; Nascimento, E.M.S.; Lima, S.F.A.; Silva, S.F.; Duarte, J.M.L.; Sousa, B.M. Spatial variability of total porosity, moisture and soil resistance to penetration of a Yellow Argisol. Semin. Ciências Agrárias 2012, 33, 2057–2066. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Souza, E.B.; Cortez, J.W.; Olszevski, N.; De Jesus, N.H.; Da Cunha, H.A.; De Araújo, V.F.; Feitosa, J.R. Grid sample for spatial study of penetration resistence in the elephant grass farming area. Braz. J. Agric. 2017, 92, 281–294. (In Portuguese) [Google Scholar] [CrossRef]
- Aquino, R.E.; Campos, M.C.C.; Oliveira, I.A.; Marques Junior, J.; Silva, D.M.P.; Silva, D.A.P. Spatial variability of physical attributes of anthropogenic and non-anthropogenic soils in the Manicoré, AM. Biosciência J. 2014, 30, 988–997. (In Portuguese) [Google Scholar]
- Da Vitória, E.L.; Calvi, D.P.; Barbosa, M.A.; Canal, L. Variabilidade espacial dos atributos físicos em áreas cultivadas com mamão sob diferentes preparos do solo. Rev. Eng. Na Agric. 2016, 22, 150–161. [Google Scholar] [CrossRef]
- Azevedo, E.C. Use of Geostatistics and Geoprocessing Resources in the Diagnosis of the Degradation of a Clay Soil under Pasture in the State of Mato Grosso. Ph.D. Thesis, University of Campinas, Campinas, Brazil, 2004. (In Portuguese). [Google Scholar]
- Soares, M.D.R.; Campos, M.C.C.; Souza, Z.M.; Brito, W.B.M.; Franciscon, U.; Castione, G.A. Spatial variability of soil physical attributes in an area of Terra Preta Arqueológica under pasture in Manicoré, AM. Rev. De Ciências Agrárias Amaz. J. Agric. Environ. Sci. 2015, 58, 434–441. (In Portuguese) [Google Scholar]
- Centeno, L.N.; Guevara, M.D.F.; Cecconello, S.T.; Sousa, R.O.; Timm, L.C. Soil texture: Concepts and applications in sandy soils. Rev. Bras. De Eng. E Sustentabilidade 2017, 4, 31–37. (In Portuguese) [Google Scholar]
- Almeida, K.S.S.A.; Souza, L.S.; Paz, V.P.S.; Silva, F.T.S.; Santos, D.N.; Pereira, J.S.L. Spatial variability of the hydraulic conductivity of saturated soil in a dystrocoeso yellow latosol, in the municipality of Cruz das Almas. Irriga 2018, 22, 259–274. (In Portuguese) [Google Scholar] [CrossRef]
- Martins, F.P.; Santos, E.L. Water infiltration rate and soil resistance to penetration under use and management systems. Acta Iguazu 2017, 6, 28–40. (In Portuguese) [Google Scholar]
- Neto, M.; Oliveira, J.; Mello, C.R.D.; Silva, A.M.D.; Mello, J.M.D.; Viola, M.R.; Yanagi, S.D.N.M. Temporal stability of soil moisture under effect of three spacings in a eucalyptus stand. Acta Sci. Agron. 2017, 39, 393–400. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.S.; Stone, L.F.; Godoy, G.S. Estimation of soil resistance to penetration based on S index and effective stress. Rev. Bras. De Eng. Agrícola E Ambient. 2013, 17, 932–937. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Stolf, R.; Faganello, B.F. Use of the Impact Penetrometer, Model IAA/Planalsucar-Stolf, in Recommending Soil Preparation at Usina Nossa Senhora Aparecida (Pontal-SP), 3rd ed.; STAB: Piracicaba, Brazil, 1983; pp. 11–22. (In Portuguese) [Google Scholar]
- Pedrotti, A.; Pauletto, E.A.; Crestana, S.; Ferreira, M.M.; Dias, M.S.; Gomes, A.S.; Turatti, A.L. Mechanical resistance to penetration of a Planosol submitted to different cultivation systems. Rev. Bras. De Ciência Do Solo 2001, 25, 521–529. (In Portuguese) [Google Scholar] [CrossRef]
- Busscher, W.J.; Bauer, P.J.; Camp, C.R.; Sojka, R.E. Correction of cone index for soil water content differences in a coastal plain soil. Soil Tillage Res. 1997, 43, 205–217. [Google Scholar] [CrossRef]
- Bergamin, A.C.; Vitorino, A.C.T.; Franchini, J.C.; Souza, C.M.A.; Souza, F.R. Compaction in an Oxisol distroférrico and its relations with the root growth of corn. Rev. Bras. De Ciência Do Solo 2010, 34, 681–691. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Calonego, J.C.; Gomes, T.C.; Santos, C.H. Development of cover plants in compacted soil. Biosci. J. 2011, 27, 289–296. (In Portuguese) [Google Scholar]
- Andrade, R.; Silva, S.H.G.; Faria, W.M.; Poggere, G.C.; Barbosa, J.Z.; Guilherme, L.R.G.; Curi, N. Proximal sensing applied to soil texture prediction and mapping in Brazil. Geoderma Reg. 2020, 23, e00321. (In Portuguese) [Google Scholar] [CrossRef]
- Beltrame, L.F.S.; Gondin, L.A.P.; Taylor, J.C. Structure and compaction in soil permeability Rio Grande do Sul. Rev. Bras. De Ciência Do Solo 1981, 5, 145–149. (In Portuguese) [Google Scholar]
- Souza, Z.M.; Silva, M.L.S.; Guimarães, G.L.; Campos, D.T.S.; Carvalho, M.P.; Pereira, G.T. Spatial variability of physical attributes in a dystrophic Red Latosol under no-tillage in Selviria (MS). Rev. Bras. De Ciência Do Solo 2001, 25, 699–707. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Abreu, S.L.; Reichert, J.M.; Silva, V.R.D.; Reinert, D.J.; Blume, E. Spatial variability of soil physical-water properties, yield and quality of wheat grains in Sandy Franc Argisol under no-tillage. Ciência Rural 2003, 33, 275–282. (In Portuguese) [Google Scholar] [CrossRef]
- Mercante, E.; Uribe–Opazo, M.A.; Souza, E.G. Spatial variability of water infiltration into soil under pasture as a function of trampling intensity. Rev. Bras. De Ciência Do Solo 2003, 27, 1149–1159. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Scapinelli, A.; Deina, F.R.; Valadão Junior, D.D.; Valadão, F.C.A.; Pereira, L.B. Root system and productive components of sunflower in compacted soil. Bragantia 2016, 75, 474–486. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Machado, A.L.T.; Reis, A.V.; Ferreira, M.F.P.; Machado, R.L.T.; Machado, A.L.C.; Bauer, G.B. Influence of the inflation pressure of the tractor tire on the resistance of the soil to penetration. Rev. Bras. De Agrociência 2005, 11, 481–486. (in Portuguese). [Google Scholar]
Depths (cm) | Clay Coarse | Clay Thin | Silt | Sand |
---|---|---|---|---|
% | ||||
0–20 | 32 | 25.4 | 12.6 | 30 |
20–40 | 32 | 25.3 | 12.7 | 30 |
40–60 | 31 | 25.4 | 12.6 | 31 |
Depths (cm) | Clay Coarse | Clay Thin | Silt | Sand |
---|---|---|---|---|
% | ||||
0–20 | 14 | 14.9 | 11 | 60 |
20–40 | 14 | 14.8 | 11 | 60.2 |
40–60 | 14.2 | 14.8 | 11 | 60 |
Classes | UG (g g–1) |
---|---|
Dry | <20 |
Less dry | 20–30 |
Less wet | 30–40 |
Wet | >40 |
Categories | RP (MPa) |
---|---|
Lower | <0.1 |
Moderate | 0.1–2.0 |
Much | >2.0 |
High | 4.0–8.0 |
Model | C0 | C0 + C1 | a | R2 | DSD | |
---|---|---|---|---|---|---|
Depth 0–20 (cm) | ||||||
UG | Gaus | 0.1 | 42.63 | 6.6 | 0.72 | weak |
RP | Gaus | 0 | 0.05 | 6.9 | 0.71 | weak |
Depth 20–40 (cm) | ||||||
UG | Gaus | 0.1 | 40.03 | 6.4 | 0.78 | weak |
RP | Gaus | 0 | 0.57 | 7.4 | 0.91 | weak |
Depth 40–60 (cm) | ||||||
UG | Gaus | 0.1 | 60.12 | 6.4 | 0.65 | weak |
RP | Gaus | 0 | 0.66 | 9.8 | 0.92 | weak |
Model | C0 | C0 + C1 | a | R2 | DSD | |
---|---|---|---|---|---|---|
Depth 0–20 (cm) | ||||||
UG | Gaus | 0.01 | 14.56 | 8.1 | 0.9 | weak |
RP | Gaus | 0 | 0.07 | 8.1 | 0.84 | weak |
Depth 20–40 (cm) | ||||||
UG | Gaus | 0 | 0.27 | 8.5 | 0.92 | weak |
RP | Gaus | 0 | 0.29 | 8.7 | 0.84 | weak |
Depth 40–60 (cm) | ||||||
UG | Exp | 1.8 | 16.44 | 4.7 | 0.77 | weak |
RP | Gaus | 0 | 0.15 | 7.9 | 0.92 | weak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, C.C.; Valente, G.F.; de Cinque Mariano, D.; Okumura, R.S.; de Jesus Matos Viégas, I.; Ferraz, G.A.e.S.; Ferraz, P.F.P.; Dos Santos, S.A. Spatial Variability of Soil Resistance to Penetration in Fruit Cultivation in Eastern Amazonia. AgriEngineering 2023, 5, 1302-1313. https://doi.org/10.3390/agriengineering5030082
Lopes CC, Valente GF, de Cinque Mariano D, Okumura RS, de Jesus Matos Viégas I, Ferraz GAeS, Ferraz PFP, Dos Santos SA. Spatial Variability of Soil Resistance to Penetration in Fruit Cultivation in Eastern Amazonia. AgriEngineering. 2023; 5(3):1302-1313. https://doi.org/10.3390/agriengineering5030082
Chicago/Turabian StyleLopes, Chayanne Costa, Gislayne Farias Valente, Daiane de Cinque Mariano, Ricardo Shigueru Okumura, Ismael de Jesus Matos Viégas, Gabriel Araújo e Silva Ferraz, Patrícia Ferreira Ponciano Ferraz, and Sthéfany Airane Dos Santos. 2023. "Spatial Variability of Soil Resistance to Penetration in Fruit Cultivation in Eastern Amazonia" AgriEngineering 5, no. 3: 1302-1313. https://doi.org/10.3390/agriengineering5030082
APA StyleLopes, C. C., Valente, G. F., de Cinque Mariano, D., Okumura, R. S., de Jesus Matos Viégas, I., Ferraz, G. A. e. S., Ferraz, P. F. P., & Dos Santos, S. A. (2023). Spatial Variability of Soil Resistance to Penetration in Fruit Cultivation in Eastern Amazonia. AgriEngineering, 5(3), 1302-1313. https://doi.org/10.3390/agriengineering5030082