Spectral Mixture Modeling of an ASTER Bare Soil Synthetic Image Using a Representative Spectral Library to Map Soils in Central-Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characterization
2.2. Fieldwork and Laboratory Activities
2.3. Soil Spectra Characterization
2.4. ASTER Digital Data Processing
2.5. Bare Soil Image
2.6. Digital Soil Mapping
2.7. Digital Soil Map Validation
3. Results
3.1. Representative Soil Classes Description from the Study Area
3.2. Spectral Patterns of Representative Soils
3.3. Endmembers Organization
4. Discussion
4.1. Soil Synthetic Image Assessment
4.2. Spectral Mixture Analysis Model with Multiples Endmembers (MESMA)
4.3. Digital Soil Classes Map Validation
4.4. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUSS Working Group WRB; FAO; IUSS Working Group WRB. World Reference Base for Soil Resources 2014 International Soil Classification System; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; ISBN 9789251083697. [Google Scholar]
- Novais, J.J.; Lacerda, M.P.C. Sentinel-2 imagery usage on environmental monitoring of land use and occupation in a microwatershed in Central Brazil. Gaia Sci. 2021, 15, 76–92. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Genú, A.M.; Roberts, D.; Demattê, J.A.M. The use of multiple endmember spectral mixture analysis (MESMA) for the mapping of soil attributes using ASTER imagery. Acta Sci. Agron. 2013, 35, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef] [Green Version]
- Gallo, B.C.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; de Mendes, W.S.; Lepsch, I.F.; Sato, M.V.; Romero, D.J.; Lacerda, M.P.C. Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Diek, S.; Schaepman, M.E.; de Jong, R. Creating multi-temporal composites of airborne imaging spectroscopy data in support of digital soil mapping. Remote Sens. 2016, 8, 906. [Google Scholar] [CrossRef] [Green Version]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef] [Green Version]
- Novais, J.J.; Lacerda, M.P.C.; Sano, E.E.; Demattê, J.A.M.; Oliveira, M.P. Digital soil mapping by multispectral modeling using cloud-computed landsat time series. Remote Sens. 2021, 13, 1181. [Google Scholar] [CrossRef]
- Abrams, M.; Hook, S.; Ramachandran, B. Aster User Handbook, 2nd ed.; Technology Institute: Foster City, CA, USA, 2007; Volume 2. [Google Scholar]
- de Baptista, G.M.M.; Vivaldi, D.D.; Meneses, P.R. Correção atmosférica e de “crosstalk” em dados Aster para mapeamento da relação mineralógica de solos. Pesqui. Agropecu. Bras. 2016, 51, 1272–1282. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Lacerda, M.P.C.; Demattê, J.A.M.; Oliveira, M.P.; Gallo, B.C.; Safanelli, J.L. Pedology and soil class mapping from proximal and remote sensed data. Geoderma 2019, 348, 189–206. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; de Mendes, W.S.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; Mello, F.A.d.O.; et al. Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppiel, R.R.; Lacerda, M.P.C.; Demattê, J.A.M.; Oliveira, M.P.; Gallo, B.C.; Safanelli, J.L. Soil class map of the Rio Jardim watershed in Central Brazil at 30 m spatial resolution based on proximal and remote sensed data and MESMA method. Data Br. 2019, 25, 104070. [Google Scholar] [CrossRef]
- Coblinski, J.A.; Giasson, É.; Demattê, J.A.M.; Dotto, A.C.; Costa, J.J.F.; Vašát, R. Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. Catena 2020, 189, 104485. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Bellinaso, H.; Romero, D.J.; Fongaro, C.T. Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification. Sci. Agric. 2014, 71, 509–520. [Google Scholar] [CrossRef]
- Lacerda, M.P.C.; Demattê, J.A.M.; Sato, M.V.; Fongaro, C.T.; Gallo, B.C.; Souza, A.B. Tropical texture determination by Proximal Sensing using a regional spectral library and its relationship with soil classification. Remote Sens. 2016, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Freitas-Silva, F.H.; Campos, J.E.G. Geologia do Distrito Federal. In Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal; Distrito Federal: Brasília, Brazil, 1998; Volume 1, 86p. [Google Scholar]
- Reatto, A.; Martins, E.S.; Farias, M.F.R.; Silva, A.V.; Carvalho Júnior, O.A. Mapa Pedológico Digital: SIG Atualizado do Distrito Federal Escala 1:100.000 e uma Síntese do Texto Explicativo, 120th ed.; Embrapa Cerrados—CPAC: Planaltina-DF, Brasil, 2004; ISBN 1517-5111. [Google Scholar]
- Lacerda, M.P.C.; Barbosa, I.O. Soil-Geomorphological relationships and pedoforms distribution in the ecological station of Águas Emendadas, Distrito Federal. Rev. Bras. Cienc. do Solo 2012, 36, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Sano, E.E.; Rodrigues, A.A.; Martins, E.S.; Bettiol, G.M.; Bustamante, M.M.C.; Bezerra, A.S.; Couto, A.F.; Vasconcelos, V.; Schüler, J.; Bolfe, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 2019, 232, 818–828. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Barbosa, I.O.; Lacerda, M.P.C.; Bilich, M.R. Soils distribution model based on relation between geology, geomorphology and pedology, at the High Plateau of Distrito Federal, Brazil. Rev. Asoc. Geol. Argent. 2010, 66, 569–575. Available online: http://www.scielo.org.ar/pdf/raga/v66n4/v66n4a16.pdf (accessed on 18 January 2022).
- Burt, R. Soil Survey Staff Soil Survey Field and Laboratory Methods Manual. United States Dep. Agric. Nat. Resour. Conserv. Serv. 2014, 486. [Google Scholar] [CrossRef]
- Santos, H.G. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018; ISBN 978-85-7035-198-2. [Google Scholar]
- ASD Inc. ASD Fieldspec® 4: The Industry-Leading Portable Device for Field Spectroscopy, 6th ed.; Analytical Spectral Device Inc.: Malvern, UK, 2019; 8p. [Google Scholar]
- Serbin, G.; Daughtry, C.S.T.; Hunt, E.R.; Reeves, J.B.; Brown, D.J. Effects of soil composition and mineralogy on remote sensing of crop residue cover. Remote Sens. Environ. 2009, 113, 224–238. [Google Scholar] [CrossRef]
- Novais, J.J. Digital Soil Mapping of the Ribeirão Extrema Watershed, Distrito Federal, from Multitemporal ASTER Images and Spectral Library; Graduate Program in Agronomy; Novais, J.J., Ed.; Faculty of Agronomy and Veterinary Medicine—FAV, University of Brasilia: Brasília-DF, Brasil, 2017. [Google Scholar]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data Principles and Practices, 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2013. [Google Scholar]
- Poppiel, R.R.; Lacerda, M.P.C.; Safanelli, J.L.; Rizzo, R.; Oliveira, M.P.; Novais, J.J.; Demattê, J.A.M. Mapping at 30 m resolution of soil attributes at multiple depths in midwest Brazil. Remote Sens. 2019, 11, 2905. [Google Scholar] [CrossRef]
- Ten Caten, A.; Dalmolin, R.S.D.; Ruiz, L.F.C.; De Lourdes Mendonça-Santos, M. Digital soil mapping: Strategy for data pre-processing. Digit. Soil Assess. Beyond-Proc. Fifth Glob. Work. Digit. Soil Mapp. 2012, 36, 193–196. [Google Scholar]
1 SiBCS | 2 FAO | 3 Tex. | 4 Obs. | 5 EM. | Origin |
---|---|---|---|---|---|
LATOSSOLO VERMELHO Distrófico típico | Dystric Rhodic Ferralsol | clayey | 5 | LV-I | RJ |
very- clayey | 6 | LV-II | RJ | ||
LATOSSOLO VERMELHO-AMARELO Ditrófico típico | Dystric Haplic Ferralsol | clayey | 4 | LVA-I | RJ |
loam- sandy | 4 | LVA-II | RE | ||
PLINTOSSOLO PÉTRICO Concrecionário típico | Dystric Endopetric Plinthosol | clayey | 4 | FF-I | RJ |
very-clayey | 4 | FF-II | RJ | ||
PLINTOSSOLO HÁPLICO Distrófico típico | Dystric Haplic Plintosol | clayey | 1 | FX | RJ |
NEOSSOLO REGOLÍTICO Distrófico típico | Clayic Dystric Regosol | clayey | 6 | RR | RJ |
GLEISSOLO HÁPLICO tb distrófico típico | Dystric Haplic Gleysol | clayey | 2 | GX | RJ |
ORGANOSSOLO HÁPLICO Hêmico típico | Dystric Hêmic Histosol | clayey | 1 | OX | RJ |
CAMBISSOLO HÁPLICO tb distrófico típico | Dystric Haplic Cambisol | clayey | 3 | CX | RJ |
NEOSSOLO QUARTZARÊNICO Órtico típico | Dystric Haplic Arenosol | sandy | 2 | RQ | RE |
* ASTER/TERRA | Pixels | Area | ||
---|---|---|---|---|
(ha) | 1 (%) | 2 (%) | ||
10/24/2001 | 14,800.0 | 1332.0 | 5.2 | 13.1 |
07/28/2004 | 27,600.0 | 2484.0 | 9.7 | 24.4 |
09/20/2006 | 70,578.0 | 6352.0 | 24.8 | 62.5 |
Total | 112,978.0 | 10,168.0 | 39.7 | 100.0 |
1 EM. | Soil Class [27] | Area (ha) | |||
---|---|---|---|---|---|
2 MU | Soil Class | SySI | 3 Total | ||
LV-I | LATOSSOLO VERMELHO Distrófico típico muito argiloso | 5208.38 | 7845.73 | 10,168.00 | 25,614.00 |
LV-II | LATOSSOLO VERMELHO Distrófico típico argiloso | 2637.35 | |||
LVA-I | LATOSSOLO VERMELHO-AMARELO Distrófico típico muito argiloso | 1131.22 | 1503.94 | ||
LVA-II | LATOSSOLO VERMELHO-AMARELO Distrófico típico franco-arenoso | 372.72 | |||
FF-I | PLINTOSSOLO PÉTRICO Concrecionário distrófico muito argiloso | 360.07 | 544.89 | ||
FF-II | PLINTOSSOLO PÉTRICO concrecionário distrófico argiloso | 184.73 | |||
RR | NEOSSOLO REGOLÍTICO distrófico argiloso | 100.09 | 100.04 | ||
CX | CAMBISSOLO HÁPLICO tb distrófico argiloso | 62.83 | 62.83 | ||
RQ | NEOSSOLO QUARTZARÊNICO Órtico típico distrófico | 58.77 | 58.77 | ||
FX | PLINTOSSOLO HÁPLICO Distrófico típico argiloso | 51.34 | 51.34 | ||
Unmapped | 15,446.00 | 15,446.00 |
Soil Class | Digital Soil Map | Total | UA | OE | CE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||||||
a | b | c | d | e | f | g | h | i | j | ||||||
Field truth | a | 41 | 7 | 1 | 49 | 84 | 16 | 14 | |||||||
b | 2 | 16 | 18 | 89 | 11 | 16 | |||||||||
c | 1 | 1 | 18 | 1 | 1 | 22 | 73 | 27 | 40 | ||||||
d | 3 | 2 | 1 | 26 | 32 | 81 | 19 | 33 | |||||||
e | 1 | 1 | 1 | 1 | 4 | 25 | 75 | 0 | |||||||
f | 2 | 9 | 3 | 14 | 21 | 79 | 40 | ||||||||
g | 1 | 1 | 1 | 4 | 1 | 8 | 50 | 50 | 43 | ||||||
h | 2 | 2 | 100 | 0 | 33 | ||||||||||
i | 1 | 1 | 1 | 7 | 10 | 70 | 30 | 12 | |||||||
j | 1 | 1 | 2 | 50 | 50 | 0 | |||||||||
Total | 48 | 19 | 30 | 39 | 1 | 5 | 7 | 3 | 8 | 1 | 161 | ||||
PA % | 85 | 84 | 60 | 67 | 100 | 60 | 57 | 67 | 87 | 100 | 119 | ||||
Kappa = 73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novais, J.J.; Poppiel, R.R.; Lacerda, M.P.C.; Oliveira, M.P., Jr.; Demattê, J.A.M. Spectral Mixture Modeling of an ASTER Bare Soil Synthetic Image Using a Representative Spectral Library to Map Soils in Central-Brazil. AgriEngineering 2023, 5, 156-172. https://doi.org/10.3390/agriengineering5010011
Novais JJ, Poppiel RR, Lacerda MPC, Oliveira MP Jr., Demattê JAM. Spectral Mixture Modeling of an ASTER Bare Soil Synthetic Image Using a Representative Spectral Library to Map Soils in Central-Brazil. AgriEngineering. 2023; 5(1):156-172. https://doi.org/10.3390/agriengineering5010011
Chicago/Turabian StyleNovais, Jean J., Raul R. Poppiel, Marilusa P. C. Lacerda, Manuel P. Oliveira, Jr., and José A. M. Demattê. 2023. "Spectral Mixture Modeling of an ASTER Bare Soil Synthetic Image Using a Representative Spectral Library to Map Soils in Central-Brazil" AgriEngineering 5, no. 1: 156-172. https://doi.org/10.3390/agriengineering5010011
APA StyleNovais, J. J., Poppiel, R. R., Lacerda, M. P. C., Oliveira, M. P., Jr., & Demattê, J. A. M. (2023). Spectral Mixture Modeling of an ASTER Bare Soil Synthetic Image Using a Representative Spectral Library to Map Soils in Central-Brazil. AgriEngineering, 5(1), 156-172. https://doi.org/10.3390/agriengineering5010011