Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Samples
2.2. Automatic Soaking and Germination Accelerator Unit (ASGA)
2.3. Infrared Radiation Unit
2.4. Measurements of Hydration and Physical Characteristics of GRR after Soaking Using the Conventional Method (CM) and Automatic Soaking and Germination Accelerator Unit (ASGA)
2.5. Preparation of GRR by the CM and Stimulation with IRT
2.6. Preparation of GRR via the ASGA and Stimulation with IRT
2.7. Determination of γ-Aminobutyric Acid (GABA) in GRR
2.8. Experimental Design and Statical Analyses
3. Results
3.1. Hydration and Physical Characteristics of GRR after Soaking via CM and ASGA
3.2. Germination Rate
3.3. The Influence of Germination Conditions on GABA Content of GRR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fresco, L. Rice is life. J. Food Compos. Anal. 2005, 18, 249–253. [Google Scholar] [CrossRef]
- Moongngarm, A.; Saetung, N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 2010, 122, 782–788. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Suzuki, K.; Yasui, Y.; Kasumi, T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compos. Anal. 2005, 18, 303–316. [Google Scholar] [CrossRef]
- Shu, X.-L.; Frank, T.; Shu, Q.-Y.; Engel, K.-H. Metabolite Profiling of Germinating Rice Seeds. J. Agric. Food Chem. 2008, 56, 11612–11620. [Google Scholar] [CrossRef] [PubMed]
- Galliard, T. Hydrolytic and oxidative degradation of lipids during storage of wholemeal flour: Effects of bran and germ components. J. Cereal Sci. 1986, 4, 179–192. [Google Scholar] [CrossRef]
- Cho, D.-H.; Lim, S.-T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef]
- Kayahara, H.; Tsukahara, K.; Tatai, T. Flavor, health and nutritional quality of pre-germinated brown rice. In Food Flavors and Chemistry: Advances of the New Millennium; Spanier, A.M., Shahidi, F., Parliment, T.H., Mussinan, C., Ho, C.T., Contis, E.T., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2001; pp. 546–551. [Google Scholar]
- Duangpatra, J. Seed Testing and Analysis, 1st ed.; Siam compugraphic: Bangkok, Thailand, 1986; Volume 1, p. 194. [Google Scholar]
- TeKrony, D.M. SEED VIGOR TESTING—1982. J. Seed Technol. 1983, 8, 55–60. [Google Scholar]
- Thakur, A.K.; Gupta, A.K. Water absorption characteristics of paddy, brown rice and husk during soaking. J. Food Eng. 2006, 75, 252–257. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Ulmer, H.M.; Neumann, M.; Arendt, E. The Effect of Steeping Time on the Final Malt Quality of Buckwheat. J. Inst. Brew. 2005, 111, 275–281. [Google Scholar] [CrossRef]
- Dewar, J.; Taylor, J.R.N.; Berjak, P. Determination of Improved Steeping Conditions for Sorghum Malting. J. Cereal Sci. 1997, 26, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Kordan, H.A. Patterns of Shoot and Root Growth in Rice Seedlings Germinating Under Water. J. Appl. Ecol. 1974, 11, 685–690. [Google Scholar] [CrossRef]
- Laohavanich, J.; Wongpichet, S. Thin layer drying model for gas-fired infrared drying of paddy. Songklanakarin J. Sci. Technol. 2008, 30, 343–348. [Google Scholar]
- Vipattanaporn, C.; Laohavanich, J.; Chiawchanwattana, C.; Khaengkan, P.; Yangyuen, S. Effect of Seed Quality Stimulation in Khao Dawk Mali 105 Paddy during the Dormancy Period using Infrared Radiation. J. Sustain. Sci. Manag. 2021, 16, 176–182. [Google Scholar] [CrossRef]
- Al-Mahasneh, M.A.; Rababah, T.M. Effect of moisture content on some physical properties of green wheat. J. Food Eng. 2007, 79, 1467–1473. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Tsukahara, K.; Toyoshima, H.; Suzuki, T.; Shimizu, N.; Kimura, T. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 2007, 78, 556–560. [Google Scholar] [CrossRef]
- Jiamyangyuen, S.; Ooraikul, B. The physico-chemical, eating and sensorial properties of germinated brown rice. J. Food Agric. Environ. 2008, 6, 119–124. [Google Scholar]
- Varanyanond, W.; Tungtrakul, P.; Surojanametakul, V.; Watanasiritham, L.; Luxiang, W.; Resources, N. Effects of water soaking on gamma-aminobutyric acid (GABA) in germ of different Thai rice varieties. Kasetsart J.-Nat. Sci. 2005, 39, 411–415. [Google Scholar]
- Bello, M.; Tolaba, M.P.; Suarez, C. Factors affecting water uptake of rice grain during soaking. LWT-Food Sci. Technol. 2004, 37, 811–816. [Google Scholar] [CrossRef]
- Lindenfelser, L.A.; Ciegler, A.; Hesseltine, C.W. Wild rice as fermentation substrate for mycotoxin production. Appl. Environ. Microbiol. 1978, 35, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Maisont, S.; Narkrugsa, W.J.A.; Resources, N. The effect of germination on GABA content, chemical composition, total phenolics content and antioxidant capacity of Thai waxy paddy rice. Kasetsart J.-Nat. Sci. 2010, 44, 912–923. [Google Scholar]
- Roohinejad, S.; Omidizadeh, A.; Mirhosseini, H.; Saari, N.; Mustafa, S.; Meor Hussin, A.S.; Hamid, A.; Abd Manap, M.Y. Effect of Pre-Germination Time on Amino Acid Profile and Gamma Amino Butyric Acid (GABA) Contents in Different Varieties of Malaysian Brown Rice. Int. J. Food Prop. 2011, 14, 1386–1399. [Google Scholar] [CrossRef]
- Prakhethanang, D.; Chiawchanwattana, C.; Laohavanich, J.; Khaengkhan, P.; Yangyuen, S. The Influence of infrared radiation, Hot air and Tempering on Khao Dawk Mali 105 Rice Seedling Germination and Seedling Growth. Thai Soc. Agric. Eng. J. 2019, 26, 52–61. [Google Scholar]
- Singkhornart, S.; Ryu, G.-H. Effect of Soaking Time and Steeping Temperature on Biochemical Properties and γ-Aminobutyric Acid (GABA) Content of Germinated Wheat and Barley. Prev. Nutr. Food Sci. 2011, 16, 67–73. [Google Scholar] [CrossRef]
- Hayakawa, K.; Kimura, M.; Kamata, K. Mechanism underlying γ-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. Eur. J. Pharmacol. 2002, 438, 107–113. [Google Scholar] [CrossRef]
- Miura, D.; Ito, Y.; Mizukuchi, A.; Kise, M.; Aoto, H.; Yagasaki, K. Hypocholesterolemic action of pre-germinated brown rice in hepatoma-bearing rats. Life Sci. 2006, 79, 259–264. [Google Scholar] [CrossRef]
- Opolski, A.; Mazurkiewicz, M.; Wietrzyk, J.; Kleinrok, Z.; Radzikowski, C. The role of GABA-ergic system in human mammary gland pathology and in growth of transplantable murine mammary cancer. J. Exp. Clin. Cancer Res. 2000, 193, 383–390. [Google Scholar]
- Muthusamy, S.K.; Dalal, M.; Chinnusamy, V.; Bansal, K.C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J. Plant Physiol. 2017, 211, 100–113. [Google Scholar] [CrossRef]
- Peñas, E.; Gómez, R.; Frías, J.; Vidal-Valverde, C. Application of high-pressure treatment on alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control 2008, 19, 698–705. [Google Scholar] [CrossRef]
- Bandara, J.M.R.S.; Vithanege, A.K.; Bean, G.A. Effect of parboiling and bran removal on aflatoxin levels in Sri Lankan rice. Mycopathologia 1991, 115, 31–35. [Google Scholar] [CrossRef]
- Banchuen, J.; Thammarutwasik, P.; Ooraikul, B.; Wuttijumnong, P.; Sirivongpaisal, P. Increasing the bio-active compounds contents by optimizing the germination conditions of Southern Thai Brown Rice. Songklanakarin J. Sci. Technol. 2010, 32, 219–230. [Google Scholar]
- Charoenthaikij, P.; Jangchud, K.; Jangchud, A.; Piyachomkwan, K.; Tungtrakul, P.; Prinyawiwatkul, W. Germination Conditions Affect Physicochemical Properties of Germinated Brown Rice Flour. J. Food Sci. 2009, 74, C658–C665. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.k.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, P.J.; Martínez-Villaluenga, C.; Amigo, L.; Frias, J. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 2014, 152, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, R.R.; Cherry, J.H.; Rhodes, D. Effects of Heat Shock on Amino Acid Metabolism of Cowpea Cells. Plant Physiol. 1990, 94, 796–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Control | CM | ASGA |
---|---|---|---|
1000 grain weight (g) | 24.82 ± 0.1 b | 34.28 ± 0.5 a | 33.12 ± 0.7 a |
Density (kg/m3) | 537.66 ± 7.9 b | 572.83 ± 10.4 a | 560.22 ± 12.0 a |
Moisture content (%wb) | 12.42 ± 0.2 b | 37.61 ± 0.5 a | 36.54 ± 0.1 a |
Method | IRT | Germination Rate (%) | |||||
---|---|---|---|---|---|---|---|
10 Months | 11 Months | 12 Months | |||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | ||
CM | N-S | n/a | 77.67 ± 2.1 B | n/a | 81.00 ± 2.0 B | n/a | 65.33 ± 3.1 CD |
S | n/a | 86.67 ± 2.5 A | n/a | 87.33 ± 3.2 A | n/a | 69.67 ± 4.7 C | |
ASGA | N-S | 53.33 ± 1.5 E | n/a | 44.00 ± 2.7 F | n/a | 39.00 ± 2.0 G | n/a |
S | 62.00 ± 2.7 D | n/a | 52.00 ± 2.0 E | n/a | 46.67 ± 2.1 F | n/a |
Indicators | df | MS | F-Value |
---|---|---|---|
Storage period | 2 | 702.86 | 98.84 ** |
Method | 1 | 7281.78 | 1024.00 ** |
IRT | 1 | 484.00 | 68.06 ** |
Method | IRT | GABA Contents (mg GABA/100 g d.w) | ||
---|---|---|---|---|
10 Months | 11 Months | 12 Months | ||
CM | N-S | 12.85 ± 2.3 ABCD | 4.63 ± 2.0 G | 8.35 ± 1.8 EF |
S | 15.11 ± 1.6 AB | 12.59 ± 0.6 ABCD | 14.71 ± 1.1 AB | |
ASGA | N-S | 11.59 ± 2.4 CD | 6.88 ± 0.2 FG | 8.61 ± 1.5 EF |
S | 15.44 ± 2.2 A | 13.78 ± 1.6 ABC | 13.71 ± 3.0 ABC | |
Control | 12.24 ± 1.8 BCD | 10.53 ± 2.0 DE | 4.43 ± 0.2 G |
Indicators | df | MS | F-Value |
---|---|---|---|
Storage period | 2 | 80.58 | 19.83 ** |
Method | 1 | 1.57 | 0.39 ns |
IRT | 1 | 7.20 | 1.77 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vipattanaporn, C.; Chiawchanwattana, C.; Laohavanich, J.; Yangyuen, S. Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment. AgriEngineering 2022, 4, 414-423. https://doi.org/10.3390/agriengineering4020028
Vipattanaporn C, Chiawchanwattana C, Laohavanich J, Yangyuen S. Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment. AgriEngineering. 2022; 4(2):414-423. https://doi.org/10.3390/agriengineering4020028
Chicago/Turabian StyleVipattanaporn, Chanat, Cherdpong Chiawchanwattana, Juckamas Laohavanich, and Suphan Yangyuen. 2022. "Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment" AgriEngineering 4, no. 2: 414-423. https://doi.org/10.3390/agriengineering4020028
APA StyleVipattanaporn, C., Chiawchanwattana, C., Laohavanich, J., & Yangyuen, S. (2022). Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment. AgriEngineering, 4(2), 414-423. https://doi.org/10.3390/agriengineering4020028