Mapping and Estimating Weeds in Cotton Using Unmanned Aerial Systems-Borne Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Establishment
2.2. Data Collection
2.3. Image Mosaicking and Radiometric Calibration
- (σj)r = predicted reflectance value of a jth pixel for the red band
- (σj)g = predicted reflectance value of a jth pixel for the green band
- (σj)b = predicted reflectance value of a jth pixel for the blue band
- (λj)r = DN value of a jth pixel for the red band
- (λj)g = DN value of a jth pixel for the green band
- (λj)b = DN value of a jth pixel for the blue band
2.4. Image Preprocessing
2.4.1. Masking Non-Vegetative Area
2.4.2. Canny Edge Filtering
2.4.3. Hough Line Transformation
2.4.4. Generation of Crop-Row Strips
2.5. Weed Detection and Regression
3. Results and Discussion
3.1. Weed Mapping
3.2. Relationship between Weed Density and Pixel Coverage
- (a)
- The study has demonstrated if and how early- to mid-season weeds can be mapped in cotton using true color UAS-borne imagery.
- (b)
- The study has shown that vegetation indices such as excess greenness index and textural features can be used in mapping early- to mid-season weeds, at least for high spatial resolution true color imagery. This information can guide future researchers with shared ideas.
- (c)
- The study has illustrated that high spatial resolution true color imagery-based weed coverage area could be an effective determinant of weed density in cotton at early- to mid-growth stage of weeds.
- (d)
- The study has also demonstrated how high spatial resolution imagery can be utilized to detect early- to mid-season cotton rows and use the information to easily segment out inter-row weeds.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, M.R.; Swanton, C.J.; Anderson, G.W. The Critical Period of Weed Control in Grain Corn (Zea mays). Weed Sci. 1992, 40, 441–447. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2005, 144, 31–43. [Google Scholar] [CrossRef]
- Aracena, P.A. Spatially-Explicit Decision Support System for Invasive Weed Species Management. Ph.D. Thesis, University of Montana, Missoula, MT, USA, 2013. [Google Scholar]
- Van Evert, F.K.; Fountas, S.; Jakovetic, D.; Crnojevic, V.; Travlos, I.; Kempenaar, C. Big Data for weed control and crop protection. Weed Res. 2017, 57, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.; Brown, R. PA—Precision Agriculture. J. Agric. Eng. Res. 2001, 78, 117–125. [Google Scholar] [CrossRef]
- Everitt, J.H.; Fletcher, R.S.; Elder, H.S.; Yang, C. Mapping giant salvinia with satellite imagery and image analysis. Environ. Monit. Assess. 2007, 139, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; De Castro, A.I.; Mesas-Carrascosa, F.-J.; Peña-Barragan, J.M.; Mesas-Carrascosa, F.-J. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric. 2015, 17, 183–199. [Google Scholar] [CrossRef]
- Castaldi, F.; Pelosi, F.; Pascucci, S.; Casa, R. Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precis. Agric. 2016, 18, 76–94. [Google Scholar] [CrossRef]
- Goudy, H.J.; Bennett, K.A.; Brown, R.B.; Tardif, F.J. Evaluation of site-specific weed management using a direct-injection sprayer. Weed Sci. 2001, 49, 359–366. [Google Scholar] [CrossRef]
- Borra-Serrano, I.; Peña-Barragan, J.M.; Torres-Sánchez, J.; Mesas-Carrascosa, F.-J.; Lopez-Granados, F. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors 2015, 15, 19688–19708. [Google Scholar] [CrossRef] [PubMed]
- De Castro, A.I.; Lopez-Granados, F.; Jurado-Expósito, M. Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control. Precis. Agric. 2013, 14, 392–413. [Google Scholar] [CrossRef] [Green Version]
- Castillejo-González, I.L.; Peña-Barragan, J.M.; Jurado-Expósito, M.; Mesas-Carrascosa, F.-J.; Lopez-Granados, F. Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. Eur. J. Agron. 2014, 59, 57–66. [Google Scholar] [CrossRef]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.S.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Rana, A.; Bishop, M.; Filippi, A.M.; Cope, D.; Rajan, N.; Bagavathiannan, M. Unmanned aircraft systems for precision weed detection and management: Prospects and challenges. In Advances in Agronomy; Elsevier BV: Amsterdam, The Netherlands, 2020; Volume 159, pp. 93–134. [Google Scholar]
- Akar, Özlem Mapping land use with using Rotation Forest algorithm from UAV images. Eur. J. Remote Sens. 2017, 50, 269–279. [CrossRef] [Green Version]
- Hoffmann, H.; Jensen, R.; Thomsen, A.; Nieto, H.; Rasmussen, J.; Friborg, T. Crop water stress maps for an entire growing season from visible and thermal UAV imagery. Biogeosciences 2016, 13, 6545–6563. [Google Scholar] [CrossRef] [Green Version]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Scarascia, G.M.; Harfouche, A.L. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 8. [Google Scholar] [CrossRef]
- Mirik, M.; Jones, D.C.; Price, J.; Workneh, F.; Ansley, R.J.; Rush, C.M. Satellite Remote Sensing of Wheat Infected by Wheat streak mosaic virus. Plant Dis. 2011, 95, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Swain, K.C.; Thomson, S.J.; Jayasuriya, H.P.W. Adoption of an Unmanned Helicopter for Low-Altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop. Trans. ASABE 2010, 53, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; De Castro, A.I.; Peña-Barragan, J.M.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; Lopez-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Aimonino, D.R.; Tortia, C.; Mania, E.; Guidoni, S.; Gay, P. Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery. Precis. Agric. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.-J.; De Castro, A.I.; Torres-Sánchez, J.; Tarradas, P.T.; Jiménez-Brenes, F.M.; García-Ferrer, A.; Lopez-Granados, F. Classification of 3D Point Clouds Using Color Vegetation Indices for Precision Viticulture and Digitizing Applications. Remote Sens. 2020, 12, 317. [Google Scholar] [CrossRef] [Green Version]
- Zermas, D.; Morellas, V.; Mulla, D.J.; Papanikolopoulos, N. 3D model processing for high throughput phenotype extraction–the case of corn. Comput. Electron. Agric. 2020, 172, 105047. [Google Scholar] [CrossRef]
- Louargant, M.; Jones, G.; Faroux, R.; Paoli, J.-N.; Maillot, T.; Gee, C.; Villette, S. Unsupervised Classification Algorithm for Early Weed Detection in Row-Crops by Combining Spatial and Spectral Information. Remote Sens. 2018, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Peña-Barragan, J.M.; Torres-Sánchez, J.; De Castro, A.I.; Kelly, M.; Lopez-Granados, F. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE 2013, 8, e77151. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.; Nielsen, J.; Garcia-Ruiz, F.; Christensen, S.; Streibig, J.C. Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res. 2013, 53, 242–248. [Google Scholar] [CrossRef]
- De Castro, A.I.; Torres-Sánchez, J.; Peña-Barragan, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; Lopez-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Mink, R.; Dutta, A.; Peteinatos, G.; Sökefeld, M.; Engels, J.J.; Hahn, M.; Gerhards, R. Multi-Temporal Site-Specific Weed Control of Cirsium arvense (L.) Scop. and Rumex crispus L. in Maize and Sugar Beet Using Unmanned Aerial Vehicle Based Mapping. Agricultural 2018, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.; Walter, A.; Siegwart, R. WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming. Remote Sens. 2018, 10, 1423. [Google Scholar] [CrossRef] [Green Version]
- Mirik, M.; Ansley, R.J.; Steddom, K.; Jones, D.C.; Rush, C.M.; Michels, G.J.; Elliott, N.C. Remote Distinction of A Noxious Weed (Musk Thistle: CarduusNutans) Using Airborne Hyperspectral Imagery and the Support Vector Machine Classifier. Remote Sens. 2013, 5, 612–630. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, J.T.; Ismail, R.; Robertson, M. Mapping Bugweed (Solanum mauritianum) Infestations in Pinus patula Plantations Using Hyperspectral Imagery and Support Vector Machines. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 17–28. [Google Scholar] [CrossRef]
- Gao, J.; Nuyttens, D.; Lootens, P.; He, Y.; Pieters, J.G. Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst. Eng. 2018, 170, 39–50. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (Citrus Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques. Sensors 2013, 13, 2117–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Liao, W.; Nuyttens, D.; Lootens, P.; Vangeyte, J.; Panić, M.; He, Y.; Pieters, J.G. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 43–53. [Google Scholar] [CrossRef]
- Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302. [Google Scholar] [CrossRef] [Green Version]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA); Institute of Electrical and Electronics Engineers (IEEE), Marina Bay, Singapore, 29 May–3 June 2017; pp. 3024–3031. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Bah, M.D.; Dericquebourg, E.; Hafiane, A.; Canals, R. Deep Learning Based Classification System for Identifying Weeds Using High-Resolution UAV Imagery. In Proceedings of the Advances in Intelligent Systems and Computing; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 176–187. [Google Scholar]
- Sapkota, B.B.; Liang, L. A multistep approach to classify full canopy and leafless trees in bottomland hardwoods using very high-resolution imagery. J. Sustain. For. 2017, 37, 339–356. [Google Scholar] [CrossRef]
- Sapkota, B.B.; Liang, L. High-Resolution Mapping of Ash (Fraxinus spp.) in Bottomland Hardwoods to Slow Emerald Ash Borer Infestation. Sci. Remote Sens. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Ward, S.M.; Webster, T.; Steckel, L.E. Palmer Amaranth (Amaranthus palmeri): A Review. Weed Technol. 2013, 27, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Giles, D.; Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 2008, 61, 63–78. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Gée, C.; Bossu, J.; Jones, G.; Truchetet, F. Crop/weed discrimination in perspective agronomic images. Comput. Electron. Agric. 2008, 60, 49–59. [Google Scholar] [CrossRef]
- Wu, L.; Wen, Y. Weed/corn seedling recognition by support vector machine using texture features. Afr. J. Agric. Res. 2009, 4, 840–846. [Google Scholar]
- Lin, F.; Zhang, D.; Huang, Y.; Wang, X.; Chen, X. Detection of Corn and Weed Species by the Combination of Spectral, Shape and Textural Features. Sustainability 2017, 9, 1335. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.; Sebastià, M.-T.; Kirwan, L.; Finn, J.; Llurba, R.; Suter, M.; Collins, R.P.; Porqueddu, C.; Helgadóttir, Á.; Baadshaug, O.H.; et al. Weed suppression greatly increased by plant diversity in intensively managed grasslands: A continental-scale experiment. J. Appl. Ecol. 2017, 55, 852–862. [Google Scholar] [CrossRef]
Species | Average Weed Density (m−2) | |||
---|---|---|---|---|
Low | Medium | High | Size * | |
Palmer amaranth (Amaranthus palmeri S. Watson) | 2 | 5 | 10 | 4 to 6 leaf stage (10–15 cm tall) |
Red sprangletop (Leptochloa mucronata Michx.) | 2 | 8 | 15 | 4 to 10 tiller stage (8–15 cm tall) |
Mornigglories (Ipomoea spp.) | 1 | 2 | 3 | 1 to 4 leaf stage |
Texas millet (Urochloa texana Buckl.) | 0 | 1 | 3 | 2 to 7 tiller stage (7–10 cm tall) |
Devil’s claw (Proboscidea louisianica (Mill.) Thell.) | 1 | 2 | 2 | 1 to 4 leaf stage |
Total | 6 | 18 | 33 |
Feature Type | Feature Name a | Description |
---|---|---|
Spectral (N = 4) | B, G, R, ExG | Mean values of all three channels and derived features for each grid object |
Textural (N = 18) | GLCM Homogeneity at 45° for R, G, and B | Second-order textural statistics based on Haralick et al. [49] |
GLCM Homogeneity at 270° for R, G, and B | ||
GLCM Contrast at 45° for R, G, and B | ||
GLCM Contrast at 270° for R, G, and B | ||
GLCM Entropy at 45° for R, G, and B | ||
GLCM Entropy at 270° for R, G, and B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, B.; Singh, V.; Cope, D.; Valasek, J.; Bagavathiannan, M. Mapping and Estimating Weeds in Cotton Using Unmanned Aerial Systems-Borne Imagery. AgriEngineering 2020, 2, 350-366. https://doi.org/10.3390/agriengineering2020024
Sapkota B, Singh V, Cope D, Valasek J, Bagavathiannan M. Mapping and Estimating Weeds in Cotton Using Unmanned Aerial Systems-Borne Imagery. AgriEngineering. 2020; 2(2):350-366. https://doi.org/10.3390/agriengineering2020024
Chicago/Turabian StyleSapkota, Bishwa, Vijay Singh, Dale Cope, John Valasek, and Muthukumar Bagavathiannan. 2020. "Mapping and Estimating Weeds in Cotton Using Unmanned Aerial Systems-Borne Imagery" AgriEngineering 2, no. 2: 350-366. https://doi.org/10.3390/agriengineering2020024
APA StyleSapkota, B., Singh, V., Cope, D., Valasek, J., & Bagavathiannan, M. (2020). Mapping and Estimating Weeds in Cotton Using Unmanned Aerial Systems-Borne Imagery. AgriEngineering, 2(2), 350-366. https://doi.org/10.3390/agriengineering2020024