Assessment of Gaseous Emissions from Cattle Abattoir Wastes in Cameroon
Abstract
:1. Introduction
- Quantifying and characterising intestinal and stomach waste production;
- Modeling CH4 production factor from the storage of abattoir wastes;
- Measuring CH4, N2O, and CO2 emission rates from the storage of abattoir wastes.
2. Materials and Methods
2.1. Abbatoir Management
2.2. Intestinal and Stomach Wastes Measurement and Characterization
2.3. Modelling Methane Production Factor
2.4. Measurement of Methane, Nitrous Oxide, and Carbon Dioxide Emission Rates from Outdoor Storage of Intestinal and Stomach Wastes
2.5. Measurement of Air Temperature and Relative Humidity
3. Results and Discussion
3.1. Variations in Outdoor Air Temperature and Relative Humidity
3.2. Intestinal and Stomach Waste Production, Characterisation, and Modeled Methane Production Factors
3.3. Measured Methane, Nitrous Oxide, and Carbon Dioxide Emission Rates from Outdoor Storage of Intestinal and Stomach Wastes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adeyemi, I.G.; Adeyemo, O.K. Waste management practices at the Bodija abattoir, Nigeria. Int. J. Environ. Stud. 2007, 64, 71–82. [Google Scholar] [CrossRef]
- Ware, A.; Power, N. Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland. Renew. Energy 2016, 97, 541–549. [Google Scholar] [CrossRef]
- aan den Toorn, S.I.; van den Broek, M.A.; Worrell, E. Decarbonising meat: Exploring greenhouse gas emissions in the meat sector. Energy Procedia 2017, 123, 353–360. [Google Scholar] [CrossRef]
- Herrero, M.; Havlik, P.; McIntire, J.; Palazzo, A.; Valin, H. African Livestock Futures: Realizing the Potential of Livestock for Food Security, Poverty Reduction and the Environment in Sub-Saharan Africa; Office of the Special Representative of the UN Secretary General for Food Security and Nutrition and the United Nations System Influenza Coordination (UNSIC): Geneva, Switzerland, 2014; 118 p. [Google Scholar]
- Bello, Y.O.; Oyedemi, D.T.A. The Impact of Abattoir Activities and Management in Residential Neighbourhoods: A Case Study of Ogbomoso, Nigeria. J. Soc. Sci. 2009, 19, 121–127. [Google Scholar] [CrossRef]
- Aniebo, A.O.; Wekhe, S.N.; Okoli, I.C. Abattoir blood waste generation in Rivers State and its environmental implications in the Niger Delta. Toxicol. Environ. Chem. 2009, 91, 619–625. [Google Scholar] [CrossRef]
- Wangchuk, K.; Wangdi, J.; Mindu, M. Comparison and reliability of techniques to estimate live cattle body weight. J. Appl. Anim. Res. 2018, 46, 349–352. [Google Scholar] [CrossRef]
- Telliard, W.A. METHOD 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Ngwabie, N.M.; Chungong, B.N.; Yengong, F.L. Characterisation of pig manure for methane emission modelling in Sub-Saharan Africa. Biosyst. Eng. 2018, 170, 31–38. [Google Scholar] [CrossRef]
- IPCC. Emissions from Livestock and Manure Management. In Guidelines for National Greenhouse Gas Inventories; Dong, M.J., McAllister, T.A., Hatfield, J.L., Johnson, D.E., Lassey, K.R., Lima, M.A., Romanovskaya, A., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2006. [Google Scholar]
- Du Toit, L.; Niekerk, W.; Meissner, H.H. Direct methane and nitrous oxide emissions of monogastric livestock in South Africa. S. Afr. J. Anim. Sci. 2013, 43, 362–375. [Google Scholar] [CrossRef]
- Fillingham, M.A.; VanderZaag, A.C.; Burtt, S.; Baldé, H.; Ngwabie, N.M.; Smith, W.; Hakami, A.; Wagner-Riddle, C.; Bittman, S.; MacDonald, D. Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm. Waste Manag. 2017, 70, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ngwabie, N.M.; Wirlen, Y.L.; Yinda, G.S.; VanderZaag, A.C. Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Manag. 2018. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Lu, Q.; Xie, L.; Liu, J.; Cao, W.; Shi, Z.; Li, B.; Wang, C.; Zhang, G.; Ren, S. Greenhouse gas emissions from dairy open lot and manure stockpile in northern China: A case study. J. Air Waste Manag. Assoc. 2016, 66, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Leytem, A.B.; Dungan, R.S.; Bjorneberg, D.L.; Koehn, A.C. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems. J. Environ. Qual. 2011, 40, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Fourth Assessment Report: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
Day | * Estimated Cattle Live Weight (kg cattle−1) | Stomach and Intestinal Wastes (kg cattle−1) | DM (%) | DM (kg cattle−1) | VS (% DM) | VS (kg cattle−1) | ** Modeled EF (g CH4 cattle−1) |
---|---|---|---|---|---|---|---|
1 | 233 | 35 | 12.9 | 4.5 | 88.7 | 4.0 | 44.17 |
413 | 49 | 12.0 | 5.9 | 78.7 | 4.6 | 50.67 | |
2 | 707 | 33 | 11.9 | 3.9 | 82.0 | 3.2 | 35.75 |
548 | 38 | 12.9 | 4.9 | 88.3 | 4.3 | 47.70 | |
3 | 615 | 34 | 10.9 | 3.7 | 82.3 | 3.0 | 33.60 |
625 | 43.5 | 10.9 | 4.7 | 82.9 | 3.9 | 43.40 | |
4 | 461 | 50 | 11.2 | 5.6 | 85.3 | 4.8 | 52.86 |
295 | 40 | 11.5 | 4.6 | 79.3 | 3.6 | 40.20 | |
5 | 523 | 45 | 10.4 | 4.7 | 89.8 | 4.2 | 46.74 |
349 | 32 | 11.0 | 3.5 | 83.8 | 2.9 | 32.54 | |
6 | 349 | 31 | 10.5 | 3.2 | 89.3 | 2.9 | 31.97 |
399 | 32 | 10.8 | 3.4 | 72.4 | 2.5 | 27.57 | |
7 | 461 | 33.5 | 10.6 | 3.5 | 89.8 | 3.2 | 35.12 |
295 | 36 | 10.3 | 3.7 | 81.8 | 3.0 | 33.50 | |
8 | 276 | 36 | 11.0 | 4.0 | 79.3 | 3.1 | 34.70 |
374 | 37 | 10.9 | 4.0 | 83.4 | 3.4 | 37.06 | |
9 | 177 | 30 | 11.7 | 3.5 | 83.0 | 2.9 | 32.16 |
374 | 39 | 10.1 | 3.9 | 87.6 | 3.5 | 38.18 | |
10 | 419 | 37 | 10.9 | 4.0 | 92.1 | 3.7 | 41.07 |
523 | 32 | 12.1 | 3.9 | 69.1 | 2.8 | 30.87 | |
11 | 374 | 33.5 | 10.5 | 3.5 | 87.3 | 3.1 | 34.08 |
492 | 31 | 10.2 | 3.2 | 80.0 | 2.5 | 27.89 | |
12 | 584 | 41 | 10.4 | 4.3 | 71.4 | 3.0 | 33.64 |
424 | 40.5 | 11.8 | 4.8 | 62.9 | 2.9 | 32.16 | |
13 | 315 | 33.5 | 13.7 | 4.6 | 80.6 | 3.7 | 41.20 |
424 | 27.5 | 12.0 | 3.3 | 77.6 | 2.6 | 28.29 | |
14 | 315 | 39.5 | 11.3 | 4.5 | 73.7 | 3.3 | 36.47 |
424 | 50.5 | 11.7 | 5.9 | 85.9 | 5.1 | 56.03 | |
Mean ± standard deviation | 420 ± 125 | 37.14 ± 6.04 | 11.28 ± 1.32 | 4.19 ± 0.85 | 81.72 ± 10.33 | 3.42 ± 0.82 | 37.84 ± 8 |
Range | 177–707 | 27.50–50.50 | 9.44–15.00 | 3.00–7.00 | 40.00–94.74 | 1.61–5.52 | 27.57–56.03 |
CH4 (mg m−2 min−1) | N2O (mg m−2 min−1) | CO2 (mg m−2 min−1) | |
---|---|---|---|
Mean ± standard deviation | 5.89 ± 4.78 | 0.137 ± 0.151 | 95 ± 83 |
Range | 0.73–20.48 | 0.001–0.781 | 19–430 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngwabie, M.; VanderZaag, A.; Nji, P.; Tembong, G.; Chenwi, T. Assessment of Gaseous Emissions from Cattle Abattoir Wastes in Cameroon. AgriEngineering 2019, 1, 145-152. https://doi.org/10.3390/agriengineering1020011
Ngwabie M, VanderZaag A, Nji P, Tembong G, Chenwi T. Assessment of Gaseous Emissions from Cattle Abattoir Wastes in Cameroon. AgriEngineering. 2019; 1(2):145-152. https://doi.org/10.3390/agriengineering1020011
Chicago/Turabian StyleNgwabie, Martin, Andrew VanderZaag, Paulicle Nji, Gerald Tembong, and Theodore Chenwi. 2019. "Assessment of Gaseous Emissions from Cattle Abattoir Wastes in Cameroon" AgriEngineering 1, no. 2: 145-152. https://doi.org/10.3390/agriengineering1020011
APA StyleNgwabie, M., VanderZaag, A., Nji, P., Tembong, G., & Chenwi, T. (2019). Assessment of Gaseous Emissions from Cattle Abattoir Wastes in Cameroon. AgriEngineering, 1(2), 145-152. https://doi.org/10.3390/agriengineering1020011