Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China
Highlights
- Sustainable urban planning is indispensable amidst Wuhan’s 405.11% urban land coverage increase (1980–2016), crucial for preserving essential ecosystem services amidst rapid urban expansion
- Wuhan's rapid urban expansion has decimated green spaces and natural landscapes by 79.26%, highlighting the urgent need for advanced sustainable urban planning strategies
- Integrating green spaces within urban fabric lowers ambient temperatures by up to 5.4 °C, significantly altering microclimates and mitigating UHI effects
- Strategic use of advanced computational techniques reveals key insights into urban growth patterns and green space integration, pivotal for enhancing urban microcli-mates
- Utilizing an integrated interdisciplinary approach, this study optimizes key urban morphosectors to enhance thermal comfort, elevate environmental quality, and fortify urban resilience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Meteorological Data and Observational Techniques
2.2.2. Land-Use and Urban Morphology Data
2.3. Advanced Analytical Tools and Techniques: GIS, CFD, and GA
2.3.1. Geographic Information Systems (GISs)
2.3.2. Computational Fluid Dynamics (CFD)
2.3.3. Genetic Algorithms (GAs)
2.4. Methodological Framework
- Data integration and preprocessing: The data integration process meticulously collated meteorological, land-use, and observational data into a cohesive and unified database. Rigorous preprocessing, including data cleaning, normalization, and interpolation, ensuring consistency and accuracy across diverse datasets. This robust data foundation facilitated seamless amalgamation and laid the groundwork for subsequent analyses.
- Temporal and spatial analysis: Temporal analysis focused on identifying trends and patterns in meteorological data spanning from 1980 to 2016, revealing long-term climatic shifts and transformations. Spatial analysis, utilizing GIS technology, examined the distribution of urban forms and their correlations with microclimatic variations. Together, these integrated analyses were pivotal in clarifying the temporal and spatial dynamics of urbanization. The dual analyses provided deep insights into its environmental impacts and can inform the development of precisely tailored strategies for sustainable urban development.
- Simulation and modeling: CFD simulations were conducted across various scenarios, evaluating different building densities and heights to explore the microclimatic impacts of urban configurations. These simulations illuminated the influence of urban design on airflow dynamics and temperature distribution, contributing to the development of climate-adaptive urban strategies aimed at addressing contemporary environmental challenges.
- Optimization using genetic algorithms (GAs): The GA optimization process involved encoding intricate urban design parameters into a genetic representation, analogous to DNAs (genes), which were meticulously evaluated against microclimatic performance metrics. Through a series of iterative refinement operations, including selection, crossover, and mutation, the GA optimization process identified optimal design configurations adept at mitigating UHI effects and bolstering urban resilience. By utilizing the adaptive capabilities inherent in GA, the study explored potential pathways towards sustainable urban development, where design solutions are crafted to integrate with and enhance the urban fabric.
2.5. Innovation in Analytical Models
360° Radial Fibonacci Geometric Growth (360° RFGG) Model
2.6. Field Measurements and Validation
3. Results and Discussions
3.1. Urban Spatiotemporal Dynamics
3.2. Urbanization Gradient in Wuhan
3.3. 360° Radial Fibonacci Geometric Growth: Unveiling Nature’s Secret Blueprint
3.4. Long-Term Meteorological Analysis: Insights into Wuhan’s Climate Patterns
3.5. Urban Morphological Analysis: Deciphering Dynamic Landscapes
3.6. CFD Simulation Results
3.7. Spatial Optimization Outcomes: Genetic Algorithm-Based Location Analytics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Zhang, F.; Qiu, B.; Zhang, X.; Yu, Z.; Mao, Y.; Wang, C.; Zhang, J. Green-gray imbalance: Rapid urbanization reduces the probability of green space exposure in early 21st century China. Sci. Total Environ. 2024, 933, 173168. [Google Scholar] [CrossRef] [PubMed]
- de la Joie Horimbere, E.; Chen, H.; Makvandi, M. An Exploration of the Effects of Urban Block Design on the Outdoor Thermal Environment in Tropical Savannah Climate: Case Study of Nyamirambo Neighborhood of Kigali. In Towards Implementation of Sustainability Concepts in Developing Countries; Springer: Berlin/Heidelberg, Germany, 2021; pp. 17–28. Available online: https://link.springer.com/chapter/10.1007/978-3-030-74349-9_2 (accessed on 23 May 2024).
- Wu, B.; Zhang, Y.; Wang, Y.; Lin, X.; Wu, Y.; Wang, J.; Wu, S.; He, Y. Urbanization promotes carbon storage or not? The evidence during the rapid process of China. J. Environ. Manag. 2024, 359, 121061. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Zou, L.; Xia, J.; Dong, Y.; Yang, Z.; Yao, T. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China. Sci. Total Environ. 2023, 866, 161321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y.; Lu, X.; Chen, G.; Li, Z.; Cai, M.; Ren, C.; Fung, J.C.H. Urbanization impact on meteorological condition and O3 concentration under past and future climates scenarios over the Greater Bay Area in Southern China. Atmos. Environ. 2024, 331, 120585. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, L.; Meng, Q.; Zhu, M.; Xiong, M. Nonlinear causal relationships between urbanization and extreme climate events in China. J. Clean. Prod. 2024, 434, 139889. [Google Scholar] [CrossRef]
- Makvandi, M.; Li, W.; Ou, X.; Chai, H.; Khodabakhshi, Z.; Fu, J.; Yuan, P.F.; Horimbere, E.D. Urban Heat Mitigation towards Climate Change Adaptation: An Eco-Sustainable Design Strategy to Improve Environmental Performance under Rapid Urbanization. Atmosphere 2023, 14, 638. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.; Chen, Q. Characteristics of urban expansion in megacities and its impact on water-related ecosystem services: A comparative study of Chengdu and Wuhan, China. Ecol. Indic. 2024, 158, 111322. [Google Scholar] [CrossRef]
- Sun, J.; He, Q.; Wang, H. CA-based urban growth model considering the temporal dynamic adjustment of local spatial driving factors: An application in Wuhan City. Heliyon 2024, 10, e30678. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xie, H. Research on Characteristics of Changes of Lakes in Wuhan’s Main Urban Area. Procedia Eng. 2011, 21, 395–404. [Google Scholar] [CrossRef]
- Yang, B.; Ke, X. Analysis on urban lake change during rapid urbanization using a synergistic approach: A case study of Wuhan, China. Phys. Chem. Earth Parts A/B/C 2015, 89–90, 127–135. [Google Scholar] [CrossRef]
- Almulhim, A.I.; Cobbinah, P.B. Framing resilience in Saudi Arabian cities: On climate change and urban policy. Sustain. Cities Soc. 2024, 101, 105172. [Google Scholar] [CrossRef]
- Chen, J.; Kinoshita, T.; Li, H.; Luo, S.; Su, D. Which green is more equitable? A study of urban green space equity based on morphological spatial patterns. Urban For. Urban Green. 2024, 91, 128178. [Google Scholar] [CrossRef]
- Wu, S.; Wong, M.S.; Di, B.; Ding, X.; Shi, G.; Chan, E.H.W.; Muhammad, W. Unveiling the urban resilience in cities of China, a study on NO2 concentrations and COVID-19 pandemic. Atmos. Environ. 2024, 326, 120447. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Ren, R.; Wang, Y. Comprehensive evaluation and spatial-temporal evolution characteristics of urban resilience in Chengdu-Chongqing Economic Circle. Chin. J. Popul. Resour. Environ. 2024, 22, 58–67. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Wang, S. Urban mobility resilience under heat extremes: Evidence from bike-sharing travel in New York. Travel Behav. Soc. 2024, 37, 100821. [Google Scholar] [CrossRef]
- Li, R.; Di, Y.; Tian, H. Computer-aided resilience: Advanced techniques for disaster management in smart urban environments. Sustain. Cities Soc. 2024, 108, 105437. [Google Scholar] [CrossRef]
- Amegavi, G.B.; Nursey-Bray, M.; Suh, J. Exploring the realities of urban resilience: Practitioners’ perspectives. Int. J. Disaster Risk Reduct. 2024, 103, 104313. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Dai, D.; Bo, M.; Ren, X.; Dai, K. Application and exploration of artificial intelligence technology in urban ecosystem-based disaster risk reduction: A scoping review. Ecol. Indic. 2024, 158, 111565. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Du, S.; Tian, S.; Jia, A.; Ye, Y.; Gao, N.; Kuang, X.; Shi, X. A systematic review of urban form generation and optimization for performance-driven urban design. Build. Environ. 2024, 253, 111269. [Google Scholar] [CrossRef]
- Makvandi, M.; Li, B.; Elsadek, M.; Khodabakhshi, Z.; Ahmadi, M. The Interactive Impact of Building Diversity on the Thermal Balance and Micro-Climate Change under the Influence of Rapid Urbanization. Sustainability 2019, 11, 1662. [Google Scholar] [CrossRef]
- Shen, Y.; Kong, W.; Fei, F.; Chen, X.; Xu, Y.; Huang, C.; Yao, J. Stereoscopic urban morphology metrics enhance the nonlinear scale heterogeneity modeling of UHI with explainable AI. Urban Clim. 2024, 56, 102006. [Google Scholar] [CrossRef]
- Modarresi, A.; Symons, J. Modeling and Graph Analysis for Enhancing Resilience in Smart Homes. Procedia Comput. Sci. 2019, 160, 197–205. [Google Scholar] [CrossRef]
- Kamana, A.A.; Radoine, H.; Nyasulu, C. Urban challenges and strategies in African cities—A systematic literature review. City Environ. Interact. 2024, 21, 100132. [Google Scholar] [CrossRef]
- Ibănescu, B.-C.; Pascariu, G.C.; Bănică, A.; Bejenaru, I. Smart city: A critical assessment of the concept and its implementation in Romanian urban strategies. J. Urban Manag. 2022, 11, 246–255. [Google Scholar] [CrossRef]
- Zhu, J.; Gianoli, A.; Noori, N.; de Jong, M.; Edelenbos, J. How different can smart cities be? A typology of smart cities in China. Cities 2024, 149, 104992. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Zhang, Z. City profile: Wuhan 2004–2020. Cities 2022, 123, 103585. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Zhang, C.; Guo, L.; Zhao, H.; Islam, D.; Li, H.; Liu, Z.; Middleton, G. Modeling urban redevelopment: A novel approach using time-series remote sensing data and machine learning. Geogr. Sustain. 2024, 5, 211–219. [Google Scholar] [CrossRef]
- Huang, X.; Wang, F. Calculative governmentality for agreement: Politics of urban redevelopment in Chengdu, China. Geoforum 2024, 150, 103991. [Google Scholar] [CrossRef]
- Li, W.; Sun, Z.; Makvandi, M.; Chen, Q.; Fu, J.; Gong, L.; Yuan, P.F. The Use of Normative Energy Calculation beyond the Optimum Retrofit Solutions in Primary Design: A Case Study of Existing Buildings on a Campus. Sustainability 2023, 15, 7094. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Chang, X. Achieving clean energy via economic stability to qualify sustainable development goals in China. Econ. Anal. Policy 2024, 81, 1382–1394. [Google Scholar] [CrossRef]
- Gong, M.; Yu, K.; Zhou, C.; Liu, Z.; Xu, Z.; Xu, M.; Qu, S. SDG space: Revealing the structure and complementarities among sustainable development goals in China. Fundam. Res. 2024. [Google Scholar] [CrossRef]
- Bian, H.; Zhao, Y.; Gao, J.; Shiya, w.; Sun, J. Sustainability under policy transitions in the Yangtze River Economic Belt, China: Historical and the shared socio-economic pathways. Habitat Int. 2024, 148, 103091. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, J.; Jiang, S.; Yu, X.; Hu, T. Optimizing building spatial morphology to alleviate human thermal stress. Sustain. Cities Soc. 2024, 106, 105386. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Liu, Y.; Li, X. Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle. Sustain. Cities Soc. 2023, 98, 104831. [Google Scholar] [CrossRef]
- Mahmoudinazlou, S.; Kwon, C. A hybrid genetic algorithm with type-aware chromosomes for Traveling Salesman Problems with Drone. Eur. J. Oper. Res. 2024, 318, 719–739. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, C.; Liu, J.; Liu, H.; Xu, X.; Xue, P.; Gong, H.; Jiao, F.; Zhang, M. How urbanization shapes the ecosystem carbon sink of vegetation in China: A spatiotemporal analysis of direct and indirect effects. Urban Clim. 2024, 55, 101896. [Google Scholar] [CrossRef]
- Ku, C.-A. Evaluating the effects of land-use strategies on future flood risk reduction in urban areas. Cities 2024, 150, 104989. [Google Scholar] [CrossRef]
- Mashagiro, G.Q.; Mujinya, B.B.; Colinet, G.; Mahy, G. Vegetation degradation alters soil physicochemical properties and potentially affects ecosystem services in green spaces of a tropical megacity (Lubumbashi, DR Congo). Geoderma Reg. 2024, 37, e00810. [Google Scholar] [CrossRef]
- Benati, G.; Calcagni, F.; Martellozzo, F.; Ghermandi, A.; Langemeyer, J. Unequal access to cultural ecosystem services of green spaces within the city of Rome—A spatial social media-based analysis. Ecosyst. Serv. 2024, 66, 101594. [Google Scholar] [CrossRef]
- Paudel, S.; States, S.L. Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For. Urban Green. 2023, 84, 127932. [Google Scholar] [CrossRef]
- Tuffery, L. Preferences for forest proximity and recreational amenities revealed by the random bidding model. Landsc. Urban Plan. 2019, 189, 181–188. [Google Scholar] [CrossRef]
- Holt, J.R.; Borsuk, M.E. Using Zillow data to value green space amenities at the neighborhood scale. Urban For. Urban Green. 2020, 56, 126794. [Google Scholar] [CrossRef]
- Subramanian, D.; Jana, A. Assessing urban recreational open spaces for the elderly: A case of three Indian cities. Urban For. Urban Green. 2018, 35, 115–128. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Zhu, Z.; Ding, G. Coexistence Perspectives: Exploring the impact of landscape features on aesthetic and recreational values in urban parks. Ecol. Indic. 2024, 162, 112043. [Google Scholar] [CrossRef]
- Fang, Y.-N.; Tian, J.; Namaiti, A.; Zhang, S.; Zeng, J.; Zhu, X. Visual aesthetic quality assessment of the streetscape from the perspective of landscape-perception coupling. Environ. Impact Assess. Rev. 2024, 106, 107535. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Meitner, M.J.; Hu, Y.; Xu, X. Characteristics of urban green spaces in relation to aesthetic preference and stress recovery. Urban For. Urban Green. 2019, 41, 6–13. [Google Scholar] [CrossRef]
- Zhao, W.; Li, X.; Zhu, X.; Ye, H.; Xu, H. Restorative properties of green sheltered spaces and their morphological characteristics in urban parks. Urban For. Urban Green. 2023, 86, 127986. [Google Scholar] [CrossRef]
- Delgado-Serrano, M.M.; Melichová, K.; Mac Fadden, I.; Cruz-Piedrahita, C. Perception of green spaces’ role in enhancing mental health and mental well-being in small and medium-sized cities. Land Use Policy 2024, 139, 107087. [Google Scholar] [CrossRef]
- Aghabozorgi, K.; van der Jagt, A.; Bell, S.; Brown, C. Assessing the impact of blue and green spaces on mental health of disabled children: A scoping review. Health Place 2023, 84, 103141. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Y.; Huang, X. A new framework for analysis of the spatial patterns of 15-minute neighbourhood green space to enhance carbon sequestration performance: A case study in Nanjing, China. Ecol. Indic. 2023, 156, 111196. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Y.; Huang, X.; Cheng, S. Multi-scenario simulation of spatial structure and carbon sequestration evaluation in residential green space. Ecol. Indic. 2023, 154, 110902. [Google Scholar] [CrossRef]
- Liang, H.; Lin, Y.; Chen, Y.; Hao, X.; Gao, D.; Yu, N.; Li, Y.; Qiu, L.; Gao, T. The relationships among biodiversity, perceived biodiversity and recreational preference in urban green spaces–A case study in Xianyang, China. Ecol. Indic. 2023, 146, 109916. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Zhang, X.; Wang, J.; Yang, Y.; Sun, Y.; Guo, X.; Wu, Q.; Nepovimova, E.; Watson, A.E.; et al. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Sci. Total Environ. 2024, 937, 173377. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, O.; Mizen, A.; Fry, R. A cross-sectional analysis of biodiversity, publicly accessible green space and mental well-being in Wales using routinely collected data. Landsc. Urban Plan. 2024, 243, 104971. [Google Scholar] [CrossRef]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makvandi, M.; Li, W.; Li, Y.; Wu, H.; Khodabakhshi, Z.; Xu, X.; Yuan, P.F. Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China. Smart Cities 2024, 7, 2110-2130. https://doi.org/10.3390/smartcities7040084
Makvandi M, Li W, Li Y, Wu H, Khodabakhshi Z, Xu X, Yuan PF. Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China. Smart Cities. 2024; 7(4):2110-2130. https://doi.org/10.3390/smartcities7040084
Chicago/Turabian StyleMakvandi, Mehdi, Wenjing Li, Yu Li, Hao Wu, Zeinab Khodabakhshi, Xinhui Xu, and Philip F. Yuan. 2024. "Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China" Smart Cities 7, no. 4: 2110-2130. https://doi.org/10.3390/smartcities7040084
APA StyleMakvandi, M., Li, W., Li, Y., Wu, H., Khodabakhshi, Z., Xu, X., & Yuan, P. F. (2024). Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China. Smart Cities, 7(4), 2110-2130. https://doi.org/10.3390/smartcities7040084