Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques
Abstract
:1. Introduction
2. Literature Review
2.1. From Sustainable Development and Smart City to Sustainable Smart City
2.2. Sustainable Smart City Indicators
3. Methods and Data Collection
3.1. Content Analysis: Selection of the Most Used SSC Dimensions from the Literature Review
3.2. Analytic Hierarchy Process (AHP) Method: Ranking the Selected Dimensions
3.2.1. Aggregation of the Experts’ Priorities
- where: n is the number of experts (respondents).
- And: x is the decision value scored by each respondent.
3.2.2. Calculation of AHP Weights Bounded by the Consistency Ratio Rule
- where: aij indicates the relative priority of elements ai to aj.
- If aij is scored 9, 7, 5, 3, or 1, then aji receives the reciprocal, 1/9, 1/7, 1/5, 1/3, or 1/1 (=1).
3.3. Combined Ranking Using a Relative Scoring System
- Si is the local score of the dimension “i” out of 10.
- Xi is the score given by the study to the dimension “i”.
- Xmax is the score granted by the study for the BPD.
4. Findings and Discussion
4.1. Ranking of Selected SSC Dimensions through Literature Content Analysis
4.2. Priorities of the Selected SSC Dimensions As a Result of the AHP Analysis
4.2.1. AHP Experts’ Profile
4.2.2. Computing the Pair-Wise Comparison Priorities
4.3. Combined Ranking of the SSC Dimensions
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Ramaprasad, A.; Sánchez-Ortiz, A.; Syn, T. Ontological review of smart city research. In Proceedings of the Twenty-Third Americas Conference on Information Systems, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Ramaprasad, A.; Sánchez-Ortiz, A.; Syn, T. A unified definition of a smart city. In Proceedings of the Electronic Government: 16th IFIP WG 8.5 International Conference, EGOV 2017, St. Petersburg, Russia, 4–7 September 2017; pp. 13–24. [Google Scholar]
- Lee, N.; Rodríguez-Pose, A. Creativity, cities, and innovation. Environ. Plan. A 2014, 46, 1139–1159. [Google Scholar] [CrossRef]
- World Economic Forum. Global Risks 2015 Report; World Economic Forum: Cologny, Switzerland, 2015. [Google Scholar]
- Anderson, M. Smart Cities Examples: The Smart, The Not-So-Smart, And the Ugly. 2022. Available online: https://onekeyresources.milwaukeetool.com/en/smart-cities (accessed on 15 May 2023).
- Liotine, M.; Ramaprasad, A.; Syn, T. Managing a Smart City’s Resilience to Ebola: An Ontological Framework. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Washington, DC, USA, 5–8 January 2016; pp. 2935–2943. [Google Scholar]
- Hiremath, R.; Balachandra, P.; Kumar, B.; Bansode, S.; Murali, J. Indicator-based urban sustainability—A review. Energy Sustain. Dev. 2013, 17, 555–563. [Google Scholar] [CrossRef]
- Holden, M. Sustainability indicator systems within urban governance: Usability analysis of sustainability indicator systems as boundary objects. Ecol. Indic. 2013, 32, 89–96. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Dameri, R.P. Smart city implementation. In Creating Economic and Public Value in Innovative Urban Systems; Springer: Genoa, Italy, 2017. [Google Scholar] [CrossRef]
- Kourtit, K.; Nijkamp, P. Big data dashboards as smart decision support tools for i-cities–An experiment on stockholm. Land Use Policy 2018, 71, 24–35. [Google Scholar] [CrossRef]
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5. [Google Scholar] [CrossRef]
- World Commission on Environment and Development (WCED). Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- United Nations. Report of the United Nations Conference on Environment and Development. 1992. Available online: https://digitallibrary.un.org/record/152955 (accessed on 15 May 2023).
- Huovila, A.; Bosch, P.; Airaksinen, M. Comparative analysis of standardized indicators for Smart sustainable cities: What indicators and standards to use and when? Cities 2019, 89, 141–153. [Google Scholar] [CrossRef]
- Barkemeyer, R.; Holt, D.; Preuss, L.; Tsang, S. What happened to the ‘development’ in sustainable development? Business guidelines two decades after Brundtland. Sustain. Dev. 2014, 22, 15–32. [Google Scholar] [CrossRef]
- The Welding Institute (TWI). What Is a Smart City?—Definition and Examples. 2023. Available online: https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-city (accessed on 15 May 2023).
- Diller, E. Smart Cities: Art Museums and Urban Renewal; Scofidio + Renfro Architects LLP: New York, NY, USA, 1984. [Google Scholar]
- Global Data Thematic Intelligence. History of Smart Cities: Timeline 2020. 2020. Available online: https://www.verdict.co.uk/smart-cities-timeline (accessed on 15 May 2023).
- European Commission. City Initiatives—What Are Smart Cities? 2023. Available online: https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en (accessed on 15 May 2023).
- CISCO. What Is a Smart City? 2023. Available online: https://www.cisco.com/c/en/us/solutions/industries/smart-connected-communities/what-is-a-smart-city.html#:~:text=A%20smart%20city%20uses%20digital%20technology%20to%20connect%2C,constant%20feedback%20so%20they%20can%20make%20informed%20decisions (accessed on 15 May 2023).
- Eger, J.M. Smart growth, smart cities, and the crisis at the pump a worldwide phenomenon. I-WAYS-J. E-Gov. Policy Regul. 2009, 32, 47–53. [Google Scholar] [CrossRef]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.; Nelson, L.E. Helping CIOs Understand “Smart City” Initiatives, Defining the Smart City, its Drivers, and the role of the CIO. Growth 2009, 17, 1–17. [Google Scholar]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the smart city performance. Innov. Eur. J. Soc. Sci. Res. 2012, 25, 137–149. [Google Scholar] [CrossRef]
- Bakıcı, T.; Almirall, E.; Wareham, J. A smart city initiative: The case of Barcelona. J. Knowl. Econ. 2013, 4, 135–148. [Google Scholar] [CrossRef]
- Mulligan, C.E.; Olsson, M. Architectural implications of smart city business models: An evolutionary perspective. IEEE Commun. Mag. 2013, 51, 80–85. [Google Scholar] [CrossRef]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; WW Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Shapiro, J.M. Smart cities: Quality of life, productivity, and the growth effects of human capital. Rev. Econ. Stat. 2006, 88, 324–335. [Google Scholar] [CrossRef]
- Herrschel, T. Competitiveness and sustainability: Can ‘smart city regionalism’square the circle? Urban Stud. 2013, 50, 2332–2348. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H. Developing and validating a citizen-centric typology for smart city services. Gov. Inf. Q. 2014, 31, S93–S105. [Google Scholar] [CrossRef]
- Anthopoulos, L. Defining smart city architecture for sustainability. In Proceedings of the 14th Electronic Government and 7th Electronic Participation Conference (IFIP2015), Thessaloniki, Greece, 30 August–2 September 2015; pp. 140–147. [Google Scholar]
- Huston, S.; Rahimzad, R.; Parsa, A. Smart’sustainable urban regeneration: Institutions, quality and financial innovation. Cities 2015, 48, 66–75. [Google Scholar] [CrossRef]
- Hara, M.; Nagao, T.; Hannoe, S.; Nakamura, J. New key performance indicators for a smart sustainable city. Sustainability 2016, 8, 206. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Ryoo, H.-Y.; Shin, B.-S. Sustainable wearables: Wearable technology for enhancing the quality of human life. Sustainability 2016, 8, 466. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Cocchia, A. Smart and digital city: A systematic literature review. In Smart City: How to Create Public and Economic Value with High Technology in Urban Space; Dameri, C.-S., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–44. [Google Scholar]
- Hamman, P.; Anquetin, V.; Monicolle, C. Contemporary meanings of the ‘Sustainable City’: A comparative review of the French and English language literature. Sustain. Dev. 2017, 25, 336–355. [Google Scholar] [CrossRef]
- Anthopoulos, L.; Fitsilis, P. Evolution roadmaps for smart cities: Determining viable paths. In Proceedings of the European Conference on e-Government (ECEG 2013), Como, Italy, 13–14 June 2013; pp. 27–36. [Google Scholar]
- Hao, J.; Zhu, J.; Zhong, R. The rise of big data on urban studies and planning practices in China: Review and open research issues. J. Urban Manag. 2015, 4, 92–124. [Google Scholar] [CrossRef]
- Samarajiva, R.; Lokanathan, S.; Madhawa, K.; Kreindler, G.; Maldeniya, D. Big data to improve urban planning. Econ. Political Wkly. 2015, 1, 42–48. [Google Scholar]
- Yigitcanlar, T.; Kamruzzaman, M.; Buys, L.; Ioppolo, G.; Sabatini-Marques, J.; da Costa, E.M.; Yun, J.J. Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities 2018, 81, 145–160. [Google Scholar] [CrossRef]
- Hollands, R.G. Critical interventions into the corporate smart city. Camb. J. Reg. Econ. Soc. 2015, 8, 61–77. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Does smart city policy lead to sustainability of cities? Land Use Policy 2018, 73, 49–58. [Google Scholar] [CrossRef]
- Patrão, C.; Moura, P.; de Almeida, A.T. Review of smart city assessment tools. Smart Cities. Smart Cities 2020, 3, 1117–1132. [Google Scholar] [CrossRef]
- Temenos, C. The sustainable development paradox: Urban political economy in the United States and Europe. J. Econ. Geogr. 2009, 9, 140–142. [Google Scholar] [CrossRef]
- Kambites, C.J. Sustainable development’: The ‘unsustainable’ development of a concept in political discourse. Sustain. Dev. 2014, 22, 336–348. [Google Scholar] [CrossRef]
- Höjer, M.; Wangel, J. Smart sustainable cities: Definition and challenges. In ICT Innovations for Sustainability; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 333–349. [Google Scholar]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Elgazzar, R.F.; El-Gazzar, R. Smart cities, sustainable cities, or both: A Critical Review and Synthesis of Success and Failure Factors. In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems, Porto, Portugal, 22–24 April 2017. [Google Scholar]
- International Telecommunication Union (ITU). Measuring the Information Society Report 2016. 2016. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/publications/mis2016.aspx (accessed on 15 June 2023).
- Marsal-Llacuna, M.L. City indicators on social sustainability as standardization technologies for smarter (citizen-centered) governance of cities. Soc. Indic. Res. 2016, 128, 1193–1216. [Google Scholar] [CrossRef]
- Pandey, M.; Albert, S. A review of commonly used indicators of community sustainability. In Performance Metrics for Sustainable Cities; Routledge: London, UK, 2021; pp. 19–34. [Google Scholar]
- Giffinger, R.; Kramar, H. Benchmarking, profiling, and ranking of cities: The “European smart cities” approach. In Performance Metrics for Sustainable Cities; Routledge: London, UK, 2021; pp. 35–52. [Google Scholar]
- Komninos, N.; Mora, L. Exploring the big picture of smart city research. J. Reg. Sci. 2018, 17, 15–38. [Google Scholar]
- Sharifi, A. A critical review of selected smart city assessment tools and indicator sets. J. Clean. Prod. 2019, 233, 1269–1283. [Google Scholar] [CrossRef]
- Lombardi, P.; Giordano, S. Evaluating the Smart and Sustainable Built Environment in Urban Planning. In Smart Cities and Smart Spaces: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 1217–1232. [Google Scholar] [CrossRef]
- Stratigea, A.; Leka, A.; Panagiotopoulou, M. In search of indicators for assessing smart and sustainable cities and communities’ performance. In Smart Cities and Smart Spaces: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 265–295. [Google Scholar] [CrossRef]
- Sharifi, A.; Murayama, A. A critical review of seven selected neighborhood sustainability assessment tools. Environ. Impact Assess. Rev. 2013, 38, 73–87. [Google Scholar] [CrossRef]
- Petrova-Antonova, D.; Ilieva, S. Smart cities evaluation—A survey of performance and sustainability indicators. In Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, Czech Republic, 29–31 August 2018; pp. 486–493. [Google Scholar]
- Caird, S. City approaches to smart city evaluation and reporting: Case studies in the United Kingdom. Urban Res. Pract. 2018, 11, 159–179. [Google Scholar] [CrossRef]
- Anand, A.; Rufuss, D.D.W.; Rajkumar, V.; Suganthi, L. Evaluation of sustainability indicators in smart cities for India using MCDM approach. Energy Proc. 2017, 141, 211–215. [Google Scholar] [CrossRef]
- Phillis, Y.A.; Kouikoglou, V.S.; Verdugo, C. Urban sustainability assessment and ranking of cities. Comput. Environ. Urban Syst. 2017, 64, 254–265. [Google Scholar] [CrossRef]
- Ichikawa, H.; Yamato, N.; Dustan, P. Competitiveness of global cities from the perspective of the global power city index. Procedia Eng. 2017, 198, 736–742. [Google Scholar] [CrossRef]
- Purnomo, F.; Prabowo, H. Smart city indicators: A systematic literature review. J. Telecommun. Electron. Comput. Eng. 2016, 8, 161–164. [Google Scholar]
- Ameen, R.F.M.; Mourshed, M.; Li, H. A critical review of environmental assessment tools for sustainable urban design. Environ. Impact Assess. Rev. 2015, 55, 110–125. [Google Scholar] [CrossRef]
- Castanheira, G.; Bragança, L. The evolution of the sustainability assessment tool: From buildings to the built environment. Sci. World J. 2014, 2014, 491791. [Google Scholar] [CrossRef]
- Laurini, R. Geographic Knowledge Infrastructure: Applications to Territorial Intelligence and Smart Cities; ISTE-Elsevier: London, UK, 2017. [Google Scholar]
- Meijer, A.; Bolívar, M.P. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Aguas, M.; Almirall, E. Smart Cities as Innovation Ecosystems Sustained by Future Internet. Technical Report. 2012. Available online: https://www.diva-portal.org/smash/get/diva2:1241231/FULLTEXT01.pdf (accessed on 15 May 2023).
- Nam, T.; Prado, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, TX, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). Collection Methodology for Key Performance Indicators for Smart Sustainable Cities, (U4SSC) initiative. 2017. Available online: https://unece.org/DAM/hlm/documents/Publications/U4SSC-CollectionMethodologyforKPIfoSSC-2017.pdf (accessed on 15 July 2023).
- Guelzim, T.; Obaidat, M.S.; Sadoun, B. Introduction and overview of key enabling technologies for smart cities and homes. In Smart Cities and Homes; Morgan Kaufmann: Cambridge, MA, USA, 2016; pp. 1–16. [Google Scholar]
- Skvarciany, V.; Jurevičienė, D.; Žitkienė, R.; Lapinskaitė, I.; Dudė, U. A different approach to the evaluation of smart cities’ indicators. TalTech J. Eur. Stud. 2021, 11, 130–147. [Google Scholar] [CrossRef]
- Abba, A.H.; Noor, Z.Z.; Yusuf, R.O.; Din, M.F.M.; Abu Hassan, M.A. Assessing environmental impacts of municipal solid waste of Johor by analytical hierarchy process. Resour. Conserv. Recycl. 2013, 73, 188–196. [Google Scholar] [CrossRef]
- Saaty, T.L.; Kearns, K.P. Analytical Planning: The Organization of System; Elsevier: Amsterdam, The Netherlands; Pergamon Press: New York, NY, USA, 2014; Volume 7. [Google Scholar]
- Darko, A.; Chan, A.P.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef]
- Tavares, R.M.; Tavares, J.L.; Parry-Jones, S. The use of a mathematical multicriteria decision-making model for selecting the fire origin room. Build. Environ. 2008, 43, 2090–2100. [Google Scholar] [CrossRef]
- Saaty, T.L.; Özdemir, M.S. How many judges should there be in a group? Ann. Data Sci. 2014, 1, 359–368. [Google Scholar] [CrossRef]
- Dano, U.L. An AHP-based assessment of flood triggering factors to enhance resiliency in Dammam, Saudi Arabia. GeoJournal 2022, 87, 1945–1960. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water 2017, 9, 360. [Google Scholar] [CrossRef]
- Dahri, N.; Abida, H. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environ. Earth Sci. 2017, 76, 302. [Google Scholar] [CrossRef]
- Danumah, J.H.; Odai, S.N.; Saley, B.M.; Szarzynski, J.; Thiel, M.; Kwaku, A.; Kouame, F.K.; Akpa, L.Y. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques (Cote d’Ivoire). Geo-Environ. Disasters 2016, 3, 10. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multicriteria analysis framework for potential flood prone areas mapping. Water Resour. Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- Abbas, H.B.; Routray, J.K. Assessing factors affecting flood-induced public health risks in Kassala State of Sudan. Oper. Res. Health Care 2014, 3, 215–225. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Saaty, R. Decision Making in Complex Environment: The Analytic Hierarchy Process (AHP) for Decision Making and the Analytic Network Process (ANP) for Decision Making with Dependence and Feedback; Super Decisions: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Balogun, A.; Matori, A.; Hamid-Mosaku, A.I.; Dano, U.L.; Chandio, I.A. Fuzzy MCDM-based GIS model for subsea oil pipeline route optimization: An integrated approach. Mar. Georesources Geotechnol. 2017, 35, 961–969. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Nas, B.; Karagüzel, R. Combining AHP with GIS for landfill site selection: A case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Manag. 2010, 30, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Saaty, T.L.; Wong, M.M. Projecting average family size in rural India by the analytic hierarchy process. J. Math. Sociol. 1983, 9, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Boucher, T.O.; MacStravic, E.L. Multiattribute evaluation within a present value framework and its relation to the analytic hierarchy process. Eng. Econ. 1991, 37, 1–32. [Google Scholar] [CrossRef]
- Muralidharan, C.; Anantharaman, N.; Deshmukh, S.G. Confidence interval approach to consistency ratio rule in the applications of analytic hierarchy process. West Indian J. Eng. 2003, 26, 17–28. [Google Scholar]
- Willett, K.; Sharda, R. Using the analytic hierarchy process in water resources planning: Selection of flood control projects. Socio-Econ. Plan. Sci. 1991, 25, 103–112. [Google Scholar] [CrossRef]
- Levy, J.K. Multiple criteria decision making and decision support systems for flood risk management. Stoch. Environ. Res. Risk Assess. 2005, 19, 438–447. [Google Scholar] [CrossRef]
- Kuenz Murphy, C. Limits on the analytic hierarchy process from its consistency index. Eur. J. Oper. Res. 1993, 65, 138–139. [Google Scholar] [CrossRef]
- Olson, D.L.; Venkataramanan, M.; Mote, J.L. A technique using analytical hierarchy process in multiobjective planning models. Socio-Econ. Plan. Sci. 1986, 20, 361–368. [Google Scholar] [CrossRef]
- Dadkhah, K.M.; Zahedi, F. A mathematical treatment of inconsistency in the analytic hierarchy process. Math. Comput. Model. 1993, 17, 111–122. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Rank generation, preservation, and reversal in the analytic hierarchy decision process. Decis. Sci. 1987, 18, 157–177. [Google Scholar] [CrossRef]
- Saaty, T.L. What Is the Analytic Hierarchy Process? Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Inconsistency and rank preservation. J. Math. Psychol. 1984, 28, 205–214. [Google Scholar] [CrossRef]
- Boucher, T.O.; Luxhoj, J.T.; Descovich, T.; Litman, N. Multicriteria evaluation of automated filling systems: A case study. J. Manuf. Syst. 1993, 12, 357–378. [Google Scholar] [CrossRef]
- Islei, G.; Lockett, A.G. Judgemental modelling based on geometric least square. Eur. J. Oper. Res. 1988, 36, 27–35. [Google Scholar] [CrossRef]
- Karapetrovic, S.; Rosenbloom, E.S. A quality control approach to consistency paradoxes in AHP. Eur. J. Oper. Res. 1999, 119, 704–718. [Google Scholar] [CrossRef]
- CSER (Center for Strategic Economic Research). 2013 Prosperity Index, Measuring the Sacramento Region’s Competitive Position, 9th ed.; CSER: Sacramento, CA, USA, 2013. [Google Scholar]
- Gazzeh, K.; Abubakar, I.R. Regional disparity in access to basic public services in Saudi Arabia: A sustainability challenge. Util. Policy 2018, 52, 70–80. [Google Scholar] [CrossRef]
- Sharifi, A. A global dataset on tools, frameworks, and indicator sets for smart city assessment. Data Brief 2020, 29, 105364. [Google Scholar] [CrossRef]
- IESE Business School. Cities in Motion Index. 2015. Available online: https://media.iese.edu/research/pdfs/ST-0366-E.pdf (accessed on 15 April 2023).
- Söderström, O.; Paasche, T.; Klauser, F. Smart cities as corporate storytelling. City 2014, 18, 307–320. [Google Scholar] [CrossRef]
- Coe, A.; Paquet, G.; Roy, J. E-governance and smart communities: A social learning challenge. Soc. Sci. Comput. Rev. 2001, 19, 80–93. [Google Scholar] [CrossRef]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Suma, S.; Mehmood, R.; Albeshri, A. Automatic event detection in smart cities using big data analytics. In Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA; Springer International Publishing: Jeddah, Saudi Arabia, 2018; pp. 111–122. [Google Scholar]
- Moss Kanter, R.; Litow, S.S. Informed and Intercnnected: A Manifesto for Smarter Cities; General Management Unit Working Paper, 09-141; Harvard Business School: Boston, MA, USA, 2009. [Google Scholar]
- Rios, P. Creating “The Smart City” (Doctoral Dissertation). 2012. Available online: https://archive.udmercy.edu/handle/10429/393 (accessed on 15 July 2023).
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. In Proceedings of the 3rd Central European Conference in Regional Science, Kosice, Slovak Republic, 7–9 October 2009; pp. 7–9. [Google Scholar]
- Allam, Z.; Newman, P. Redefining the smart city: Culture, metabolism and governance. Smart Cities 2018, 1, 4–25. [Google Scholar] [CrossRef]
- Anthopoulos, L. Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities 2017, 63, 128–148. [Google Scholar] [CrossRef]
- Ibrahim, M.; El-Zaart, A.; Adams, C. Smart sustainable cities roadmap: Readiness for transformation towards urban sustainability. Sustain. Cities Soc. 2018, 37, 530–540. [Google Scholar] [CrossRef]
- Lee, J.H.; Hancock, M.G.; Hu, M.C. Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco. Technol. Forecast. Soc. Change 2014, 89, 80–99. [Google Scholar] [CrossRef]
- Khan, S.; Bele, A. Transforming lifestyles and evolving housing patterns: A comparative case study. Open House Int. 2016, 41, 76–86. [Google Scholar] [CrossRef]
Study | Number of Experts (Respondents) | |
---|---|---|
1 | [85] | 18 |
2 | [78] | 7 |
3 | [86] | 10 |
4 | [87] | 8 |
5 | [88] | 9 |
6 | [89] | 9 |
7 | [90] | 10 |
8 | [91] | 16 |
Max | 18 | |
Average | 11 | |
Min | 7 |
Scale of Importance | Definition | Interpretation |
---|---|---|
1 | The same importance | Two factors producing the same input to the goal |
3 | Having little importance | Somewhat important over its compared factor |
5 | Having more importance | Strongly important. |
7 | Having very high importance | Very strong importance. |
9 | Extremely important | Extreme significance. |
2, 4, 6 and 8 | Middle values | The middle values are used to compare two neighboring judgments whenever required. |
Reciprocals | If (v) is the decision value when (i) is compared with (j), then 1/v is the decision value when (j) is compared with (i). |
Number of Statements (Dimensions/Themes) | Number of Pairs | Number of Statements (Dimensions/Themes) | Number of Pairs |
---|---|---|---|
1 | 0 | 9 | 36 |
2 | 1 | 10 | 45 |
3 | 3 | 11 | 55 |
4 | 6 | 12 | 66 |
5 | 10 | 13 | 78 |
6 | 15 | 14 | 91 |
7 | 21 | 15 | 105 |
8 | 28 | 16 | 120 |
Matrix Size (Number of Items) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Study | No of Themes | No of Indicators | Comments | |
---|---|---|---|---|
1. | [16] | 6 | 413 | Analysis of a set of 16 Smart City Assessment tools. Investigation of two ISO * standards, one ETSI ** standard, three ITU *** standards, and the SDG 11+ + monitoring framework. |
2. | [58] | 6 | 29 | / |
3. | [60,113] | 7 | 44 | Derived from the investigation of 34 sets of indicators. Although Sharifi (2019) ended up with seven themes and 44 indicators, these studies examined 80 themes and 902 indicators with a global geographic focus. |
4. | [61] | 10 | 38 | Based on the UN-HABITAT’s Global Urban Indicators Database. |
5. | [64] | 6 | 35 | / |
6. | [66] | 7 | 20 | / |
7. | [69] | 6 | 18 | Derived from an investigation of 30 related studies. |
8. | [76] | 3 | 91 | Based on the United for Smart Sustainable Cities (U4SSC) initiative. |
9. | [77] | 13 | 13 | / |
10. | [78] | 5 | 10 | / |
11. | [114] | 10 | 57 | Cities in Motion Index (CMI). |
Total Themes/indicators | 79 | 768 |
Dimension: | Living | Environ- mrent | Economy & Productivity | Govern- ance | Infra- structure | People & Society | Technology & ICT | Mobility & Transportation | Urban Planning | Nature | |
Study | Dimensions with the highest frequency | ||||||||||
1. | [16] | ●●●●●●●●●●●●●●●● | ●●●● ●●●● | ●●●●● | ●● | ●●●●● | ●●● | ●● | ●● | ●● | - |
2. | [58] | ● | ● | ● | ● | - | ● | ● | ● | - | - |
3. | [60,113] | ● | ● | ● | ● | - | ● | ● | ● | - | - |
4. | [61] | ●●●●● | ●● | ●● | ● | ●● | ● | - | ● | ● | |
5. | [64] | ● | - | ● | ● | - | ● | - | ● | - | ● |
6. | [66] | ●● | ● | ● | ● | ● | - | - | ● | - | - |
7. | [69] | ● | ● | ● | ● | - | ● | ● | ● | - | - |
8. | [76] | ●●●●● | ●●●●● | ●● | ●● | ●●●●● | ●● | ●●●●● | ● | ● | - |
9. | [77] | ●● | ●● | ●●● | ●●● | ● | - | ● | ● | - | - |
10. | [78] | - | ● | ● | - | - | ● | ● | ● | - | - |
11. | [114] | ● | ● | ● | ●● | - | ●● | ● | ● | ● | - |
Total Weight | 35 | 23 | 19 | 15 | 14 | 13 | 13 | 12 | 5 | 1 |
Living | Environment | Economy & Productivity | Governance | Mobility & Transportation | People & Society | Infra-structure | Technology & ICT | |
---|---|---|---|---|---|---|---|---|
Living | 1.000 | 1.275 | 1.417 | 1.172 | 1.094 | 0.866 | 0.871 | 1.215 |
Environment | 0.784 | 1.000 | 1.440 | 1.495 | 1.760 | 0.364 | 0.867 | 1.551 |
Economy & Productivity | 0.706 | 0.695 | 1.000 | 1.129 | 1.179 | 0.407 | 0.728 | 1.592 |
Governance | 0.854 | 0.669 | 0.885 | 1.000 | 1.094 | 0.831 | 1.229 | 1.223 |
Mobility & Transp. | 0.914 | 0.568 | 0.848 | 0.914 | 1.000 | 0.422 | 0.687 | 1.388 |
People & Society | 1.154 | 2.744 | 2.458 | 1.204 | 2.369 | 1.000 | 1.249 | 1.511 |
Infrastructure | 1.148 | 1.153 | 1.374 | 0.814 | 1.455 | 0.801 | 1.000 | 1.584 |
Technology & ICT | 0.823 | 0.645 | 0.628 | 0.818 | 0.721 | 0.662 | 0.631 | 1.000 |
Priority Vector | |||||||||
Pair-wise Comparison Matrix | (GeoM) | ||||||||
1.000 | 1.275 | 1.417 | 1.172 | 1.094 | 0.866 | 0.871 | 1.215 | 1.099 | |
0.784 | 1.000 | 1.440 | 1.495 | 1.760 | 0.364 | 0.867 | 1.551 | 1.048 | |
0.706 | 0.695 | 1.000 | 1.129 | 1.179 | 0.407 | 0.728 | 1.592 | 0.863 | |
0.854 | 0.669 | 0.885 | 1.000 | 1.094 | 0.831 | 1.229 | 1.223 | 0.955 | |
0.914 | 0.568 | 0.848 | 0.914 | 1.000 | 0.422 | 0.687 | 1.388 | 0.797 | |
1.154 | 2.744 | 2.458 | 1.204 | 2.369 | 1.000 | 1.249 | 1.511 | 1.595 | |
1.148 | 1.153 | 1.374 | 0.814 | 1.455 | 0.801 | 1.000 | 1.584 | 1.134 | |
0.823 | 0.645 | 0.628 | 0.818 | 0.721 | 0.662 | 0.631 | 1.000 | 0.732 |
Normalized | Eigen | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pair-wise Comparison Matrix | Priority Vector | Vector | |||||||||||
1.000 | 1.275 | 1.417 | 1.172 | 1.094 | 0.866 | 0.871 | 1.215 | 0.134 | 1.083 | 8.106 | |||
0.784 | 1.000 | 1.440 | 1.495 | 1.760 | 0.364 | 0.867 | 1.551 | 0.127 | 1.056 | 8.283 | |||
0.706 | 0.695 | 1.000 | 1.129 | 1.179 | 0.407 | 0.728 | 1.592 | 0.105 | 0.854 | 8.137 | |||
0.854 | 0.669 | 0.885 | 1.000 | 1.094 | 0.831 | 1.229 | 1.223 | X | 0.116 | = | 0.954 | → | 8.214 |
0.914 | 0.568 | 0.848 | 0.914 | 1.000 | 0.422 | 0.687 | 1.388 | 0.097 | 0.787 | 8.121 | |||
1.154 | 2.744 | 2.458 | 1.204 | 2.369 | 1.000 | 1.249 | 1.511 | 0.194 | 1.632 | 8.413 | |||
1.148 | 1.153 | 1.374 | 0.814 | 1.455 | 0.801 | 1.000 | 1.584 | 0.138 | 1.114 | 8.080 | |||
0.823 | 0.645 | 0.628 | 0.818 | 0.721 | 0.662 | 0.631 | 1.000 | 0.089 | 0.727 | 8.174 |
Phase 1: Content Analysis (Co-Occurrence) | Phase 2: AHP Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Dimension | Co-Occurrence * | Score (%) | Rank | Dimension | Priority | Score (%) | Rank | |
Living | 0.2431 | 24.31 | 1 | People & Society | 0.194 | 19.40 | 1 | |
Environment | 0.1597 | 15.97 | 2 | Infrastructure | 0.138 | 13.79 | 2 | |
Economy & Productivity | 0.1319 | 13.19 | 3 | Living | 0.134 | 13.36 | 3 | |
Governance | 0.1042 | 10.42 | 4 | Environment | 0.127 | 12.75 | 4 | |
Infrastructure | 0.0972 | 9.72 | 5 | Governance | 0.116 | 11.61 | 5 | |
Technology & ICT | 0.0903 | 9.03 | 6 | Economy & Productivity | 0.105 | 10.50 | 6 | |
People & Society | 0.0903 | 9.03 | 6 | Mobility & Transportation | 0.097 | 9.69 | 7 | |
Mobility & Transportation | 0.0833 | 8.33 | 7 | Technology & ICT | 0.089 | 8.90 | 8 | |
1.000 | 100.00 | 1.000 | 100.00 |
SSC Dimensions | Co-Occurrence Study | AHP Study | Combined Score | Final Combined Ranking | ||
---|---|---|---|---|---|---|
Study Score (%) | Local Score Si (Out of 10) | Study Score (%) | Local Score Si (Out of 10) | |||
Living | 24.31 | BPD 10.00 | 13.36 | 6.89 | 8.44 | 1 |
Environment | 15.97 | 6.57 | 12.75 | 6.57 | 6.57 | 3 |
Economy & Productivity | 13.19 | 5.43 | 10.50 | 5.41 | 5.42 | 5 |
Governance | 10.42 | 4.29 | 11.61 | 5.98 | 5.14 | 6 |
Infrastructure | 9.72 | 4.00 | 13.79 | 7.11 | 5.55 | 4 |
Technology & ICT | 9.03 | 3.71 | 8.90 | 4.59 | 4.15 | 8 |
People & Society | 9.03 | 3.71 | 19.40 | BPD 10.00 | 6.86 | 2 |
Mobility & Transportation | 8.33 | 3.43 | 9.69 | 4.99 | 4.21 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazzeh, K. Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques. Smart Cities 2023, 6, 2883-2909. https://doi.org/10.3390/smartcities6050129
Gazzeh K. Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques. Smart Cities. 2023; 6(5):2883-2909. https://doi.org/10.3390/smartcities6050129
Chicago/Turabian StyleGazzeh, Karim. 2023. "Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques" Smart Cities 6, no. 5: 2883-2909. https://doi.org/10.3390/smartcities6050129
APA StyleGazzeh, K. (2023). Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques. Smart Cities, 6(5), 2883-2909. https://doi.org/10.3390/smartcities6050129