Circadian Rhythms, Regular Exercise, and Cognitive Performance in Morning-Trained Dancers
Abstract
:1. Introduction
2. Results
2.1. Circadian and Exercise Characterization
2.2. Cognitive Performance
3. Discussion
3.1. Study Findings
3.2. Limitations
4. Materials and Methods
4.1. Participants
4.2. Circadian and Sleep Habits Characterization by Self-Report
4.3. Circadian and Physical Activity Objective Measures
4.4. Justification for the Use of Independent Variables Indicators
4.5. Performance
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ENFAS | Escuela Nacional de Formación Artística del SODRE |
IS | Interdaily stability |
IV | Intraday variability |
MCTQ | Munich Chronotype Questionnaire |
MEQ | Morningness–Eveningness Questionnaire |
MPA | Moderate physical activity |
MVPA | Moderate to vigorous physical activity |
MSFsc | Midsleep point on free days corrected for sleep debt on workdays |
PVT | Psychomotor vigilance task |
RA | Relative amplitude |
References
- Klerman, E.B.; Brager, A.; Carskadon, M.A.; Depner, C.M.; Foster, R.; Goel, N.; Harrington, M.; Holloway, P.M.; Knauert, M.P.; LeBourgeois, M.K.; et al. Keeping an Eye on Circadian Time in Clinical Research and Medicine. Clin. Transl. Med. 2022, 12, e1131. [Google Scholar] [CrossRef]
- Dunster, G.P.; de la Iglesia, L.; Ben-Hamo, M.; Nave, C.; Fleischer, J.G.; Panda, S.; de la Iglesia, H.O. Sleepmore in Seattle: Later School Start Times Are Associated with More Sleep and Better Performance in High School Students. Sci. Adv. 2018, 4, eaau6200. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Waterhouse, J. Sports Performance: Is There Evidence That the Body Clock Plays a Role? Eur. J. Appl. Physiol. 2009, 106, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Paranjpe, D.A.; Sharma, V.K. Evolution of Temporal Order in Living Organisms. J. Circadian Rhythm. 2005, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Holzberg, D.; Albrecht, U. The Circadian Clock: A Manager of Biochemical Processes Within the Organism: The Circadian Clock. J. Neuroendocrinol. 2003, 15, 339–343. [Google Scholar] [CrossRef]
- Mistlberger, R.E.; Skene, D.J. Nonphotic Entrainment in Humans? J. Biol. Rhythm. 2005, 20, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Youngstedt, S.D.; Elliott, J.A.; Kripke, D.F. Human Circadian Phase–Response Curves for Exercise. J. Physiol. 2019, 597, 2253–2268. [Google Scholar] [CrossRef]
- Edwards, B.J.; Reilly, T.; Waterhouse, J. Zeitgeber-Effects of Exercise on Human Circadian Rhythms: What Are Alternative Approaches to Investigating the Existence of a Phase-Response Curve to Exercise? Biol. Rhythms Res. 2009, 40, 53–69. [Google Scholar] [CrossRef]
- Blatter, K.; Cajochen, C. Circadian Rhythms in Cognitive Performance: Methodological Constraints, Protocols, Theoretical Underpinnings. Physiol. Behav. 2007, 90, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Valdez, P. Homeostatic and Circadian Regulation of Cognitive Performance. Biol. Rhythm. Res. 2019, 50, 85–93. [Google Scholar] [CrossRef]
- Valdez, P. Circadian Rhythms in Attention. Yale J. Biol. Med. 2019, 92, 81–92. [Google Scholar] [PubMed]
- Atkinson, G.; Reilly, T. Circadian Variation in Sports Performance. Sports Med. 1996, 21, 292–312. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Pilz, L.K.; Zerbini, G.; Winnebeck, E.C. Chronotype and Social Jetlag: A (Self-) Critical Review. Biology 2019, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Facer-Childs, E.; Brandstaetter, R. The Impact of Circadian Phenotype and Time since Awakening on Diurnal Performance in Athletes. Curr. Biol. 2015, 25, 518–522. [Google Scholar] [CrossRef]
- Facer-Childs, E.R.; Boiling, S.; Balanos, G.M. The Effects of Time of Day and Chronotype on Cognitive and Physical Performance in Healthy Volunteers. Sports Med. Open 2018, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Richardson, C.; Short, M.A.; Gradisar, M. Low-Intensity Scheduled Morning Exercise for Adolescents with a Late Chronotype: A Novel Treatment to Advance Circadian Phase? Sleep Adv. 2022, 3, zpac021. [Google Scholar] [CrossRef]
- Facer-Childs, E.R.; Middleton, B.; Skene, D.J.; Bagshaw, A.P. Resetting the Late Timing of ‘Night Owls’ Has a Positive Impact on Mental Health and Performance. Sleep Med. 2019, 60, 236–247. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The Effects of Acute Exercise on Cognitive Performance: A Meta-Analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Müller, P.; Gronwald, T.; Müller, N.G. Dose–Response Matters!—A Perspective on the Exercise Prescription in Exercise–Cognition Research. Front. Psychol. 2019, 10, 2338. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T. Exercise-Cognition Interaction: Neuroscience Perspectives; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2016. [Google Scholar]
- McMorris, T. The Acute Exercise-Cognition Interaction: From the Catecholamines Hypothesis to an Interoception Model. Int. J. Psychophysiol. 2021, 170, 75–88. [Google Scholar] [CrossRef]
- Hogervorst, E.; Riedel, W.; Jeukendrup, A.; Jolles, J. Cognitive Performance after Strenuous Physical Exercise. Percept. Mot. Ski. 1996, 83, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-K.; Alderman, B.L.; Chu, C.-H.; Wang, C.-C.; Song, T.-F.; Chen, F.-T. Acute Exercise Has a General Facilitative Effect on Cognitive Function: A Combined ERP Temporal Dynamics and BDNF Study: Acute Exercise, BDNF, ERPs, and Cognition. Psychophysiology 2017, 54, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Znazen, H.; Slimani, M.; Hadadi, A.; Alzahrani, T.; Tod, D.; Bragazzi, N.L.; Souissi, N. Acute Effects of Moderate versus High-Intensity Strength Exercise on Attention and Mood States in Female Physical Education Students. Life 2021, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.D.; Willis, E.A.; Ainsworth, B.E.; Barreira, T.V.; Hastert, M.; Kracht, C.L.; Schuna, J.M.; Cai, Z.; Quan, M.; Tudor-Locke, C.; et al. 2024 Adult Compendium of Physical Activities: A Third Update of the Energy Costs of Human Activities. J. Sport Health Sci. 2024, 13, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Isoglu-Alkac, U.; Ermutlu, M.N.; Eskikurt, G.; Yücesir, İ.; Demirel Temel, S.; Temel, T. Dancers and Fastball Sports Athletes Have Different Spatial Visual Attention Styles. Cogn. Neurodyn 2018, 12, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Kattenstroth, J.-C.; Kalisch, T.; Holt, S.; Tegenthoff, M.; Dinse, H.R. Six Months of Dance Intervention Enhances Postural, Sensorimotor, and Cognitive Performance in Elderly without Affecting Cardio-Respiratory Functions. Front. Aging Neurosci. 2013, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, K.; Lüders, A.; Hökelmann, A.; Lessmann, V.; Kaufmann, J.; Brigadski, T.; Müller, P.; Müller, N.G. Dance Training Is Superior to Repetitive Physical Exercise in Inducing Brain Plasticity in the Elderly. PLoS ONE 2018, 13, e0196636. [Google Scholar] [CrossRef]
- Basso, J.C.; Suzuki, W.A. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Fietze, I.; Strauch, J.; Holzhausen, M.; Glos, M.; Theobald, C.; Lehnkering, H.; Penzel, T. Sleep quality in professional ballet dancers. Chronobiol. Int. 2009, 26, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Coirolo, N.; Silva, A.; Tassino, B. The Impact of Training Shifts in Dancers’ Chronotype and Sleep Patterns. Sleep Sci. 2020, 13, 31–35. [Google Scholar] [CrossRef]
- Coirolo, N.; Casaravilla, C.; Tassino, B.; Silva, A. Evaluation of Environmental, Social, and Behavioral Modulations of the Circadian Phase of Dancers Trained in Shifts. iScience 2022, 25, 104676. [Google Scholar] [CrossRef]
- Estevan, I.; Coirolo, N.; Tassino, B.; Silva, A. The Influence of Light and Physical Activity on the Timing and Duration of Sleep: Insights from a Natural Model of Dance Training in Shifts. Clocks Sleep. 2023, 5, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Marchesano, M.; Coirolo, N.; Tassino, B.; Silva, A. Impact of Training-Shift Change on Chronotype and Social Jetlag: A Longitudinal Study on Dancers. Biol. Rhythm. Res. 2023, 54, 664–671. [Google Scholar] [CrossRef]
- Burke, T.M.; Scheer, F.A.J.L.; Ronda, J.M.; Czeisler, C.A.; Wright, K.P. Sleep Inertia, Sleep Homeostatic and Circadian Influences on Higher-Order Cognitive Functions. J. Sleep Res. 2015, 24, 364–371. [Google Scholar] [CrossRef]
- Leone, M.J.; Sigman, M.; Golombek, D.A. Effects of Lockdown on Human Sleep and Chronotype during the COVID-19 Pandemic. Curr. Biol. 2020, 30, R930–R931. [Google Scholar] [CrossRef] [PubMed]
- Rynders, C.A.; Bowen, A.E.; Cooper, E.; Brinton, J.T.; Higgins, J.; Nadeau, K.J.; Wright, K.P.; Simon, S.L. A Naturalistic Actigraphic Assessment of Changes in Adolescent Sleep, Light Exposure, and Activity Before and During COVID-19. J. Biol. Rhythm. 2022, 37, 690–699. [Google Scholar] [CrossRef]
- Hsieh, S.-S.; Huang, C.-J.; Wu, C.-T.; Chang, Y.-K.; Hung, T.-M. Acute Exercise Facilitates the N450 Inhibition Marker and P3 Attention Marker during Stroop Test in Young and Older Adults. J. Clin. Med. 2018, 7, 391. [Google Scholar] [CrossRef]
- Wang, C.-C.; Alderman, B.; Wu, C.-H.; Chi, L.; Chen, S.-R.; Chu, I.-H.; Chang, Y.-K. Effects of Acute Aerobic and Resistance Exercise on Cognitive Function and Salivary Cortisol Responses. J. Sport Exerc. Psychol. 2019, 41, 73–81. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, F.T.; González-Víllora, S.; Baena-Morales, S.; Pastor-Vicedo, J.C.; Clemente, F.M.; Badicu, G.; Murawska-Ciałowicz, E. Effect of Physical Exercise Program Based on Active Breaks on Physical Fitness and Vigilance Performance. Biology 2021, 10, 1151. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.F.M.; Medeiros, A.R.; Del Rosso, S.; Stults-Kolehmainen, M.; Boullosa, D.A. The Influence of Exercise and Physical Fitness Status on Attention: A Systematic Review. Int. Rev. Sport Exerc. Psychol. 2019, 12, 202–234. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Harrington, D.M.; Yates, T. Beyond Cut Points: Accelerometer Metrics That Capture the Physical Activity Profile. Med. Sci. Sports Exerc. 2018, 50, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A Marker for the End of Adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef]
- Fischer, D.; Klerman, E.B.; Phillips, A.J.K. Measuring Sleep Regularity: Theoretical Properties and Practical Usage of Existing Metrics. Sleep 2021, 44, zsab103. [Google Scholar] [CrossRef]
- Horne, J.A.; Ostberg, O. A Self-Assessment Questionnaire to Determine Morningness-Eveningness in Human Circadian Rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; van Hees, V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef]
- Rock, P.; Goodwin, G.; Harmer, C.; Wulff, K. Daily Rest-Activity Patterns in the Bipolar Phenotype: A Controlled Actigraphy Study. Chronobiol. Int. 2014, 31, 290–296. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Van Hees, V.T.; Dawkins, N.P.; Maylor, B.D.; Plekhanova, T.; Henson, J.; Edwardson, C.L.; Brady, E.M.; Hall, A.P.; Davies, M.J.; et al. Accelerometer-Assessed Physical Activity in People with Type 2 Diabetes: Accounting for Sleep When Determining Associations with Markers of Health. Sensors 2023, 23, 5382. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age Group Comparability of Raw Accelerometer Output from Wrist- and Hip-Worn Monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, K.S.; Jurzysta, K. Chronotype and Intellectual Performance in the Morning: The Role of Alertness, Cortisol, and Task Stress. Biol. Rhythm. Res. 2024, 55, 278–292. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of Interference in Serial Verbal Reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Basner, M.; Mollicone, D.; Dinges, D.F. Validity and Sensitivity of a Brief Psychomotor Vigilance Test (PVT-B) to Total and Partial Sleep Deprivation. Acta Astronaut. 2011, 69, 949–959. [Google Scholar] [CrossRef]
- Dinges, D.F.; Orne, M.T.; Whitehouse, W.G.; Orne, E.C. Temporal Placement of a Nap for Alertness: Contributions of Circadian Phase and Prior Wakefulness. Sleep 1987, 10, 313–329. [Google Scholar] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 22 September 2024).
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2024; Available online: http://www.posit.co/ (accessed on 11 December 2024).
Demographic Data (n = 22) | |
Age | 22.95 (3.27) |
Sex (Female) | 18 (82%) |
Questionnaire data (n = 22) | |
MSFsc (hh:mm, n = 15) | 05:41 (01:20) |
SJL (h, n = 22) | 2.45 (1.26) |
MEQ (n = 22) | 48 (7) |
Accelerometer data (n = 21) | |
L5cf (hh:mm) | 04:40 (01:52) |
IS | 0.49 (0.08) |
IV | 0.32 (0.06) |
RA | 0.87 (0.05) |
Variable | Free Days | Training Days | t | p-Value | Cohen’s d | ||
---|---|---|---|---|---|---|---|
MCTQ (n = 22) | Midsleep (hh:mm) | 05:53 (01:22) | 03:29 (00:35) | 8.37 | 3.97 × 10−8 | *** | 1.78 (large) |
Sleep-onset (hh:mm) | 01:31 (01:38) | 23:59 (00:53) | 4.68 | 1.27 × 10−4 | *** | 0.99 (large) | |
Sleep-end (hh:mm) | 10:15 (01:28) | 06:58 (00:40) | 9.66 | 3.54 × 10−9 | *** | 2.06 (large) | |
Sleep-duration (h) | 8.73 (1.47) | 6.98 (1.03) | 5.18 | 3.94 × 10−5 | *** | 1.1 (large) | |
Accelerometry (n = 21) | L5c (hh:mm) | 04:40 (01:52) | 04:20 (00:45) | 1.03 | 3.13 × 10−1 | (ns) | - |
Sleep-onset (hh:mm) | 01:50 (01:18) | 00:35 (00:45) | 4.68 | 1.44 × 10−4 | *** | 1.02 (large) | |
Sleep-end (hh:mm) | 09:16 (01:28) | 08:01 (00:45) | 4.39 | 2.80 × 10−4 | *** | 0.96 (large) | |
Sleep-duration (h) | 7.43 (1.05) | 7.43 (0.71) | 0.05 | 9.60 × 10−1 | (ns) | - |
Task | Before Training | After Training | t | p-Value | Cohen’s d |
---|---|---|---|---|---|
PVT (s−1) | 3.77 (0.312) | 3.89 (0.325) | −2.31 | 0.031 | −0.49 (small) |
Stroop CC (s−1) | 1.66 (0.216) | 1.74 (0.191) | −2.24 | 0.036 | −0.48 (small) |
Stroop IC (s−1) | 1.46 (0.198) | 1.57 (0.19) | −2.94 | 0.008 | −0.63 (moderate) |
Stroop IC After Training—Active Group | Stroop CC After Training—Active Group | |||||||
---|---|---|---|---|---|---|---|---|
b ± SE | b ± SE | b ± SE | b ± SE | b ± SE | b ± SE | b ± SE | b ± SE | |
(Intercept) | 1.83 *** (0.09) | 0.53 (0.39) | 1.12 ** (0.42) | 1.87 * (1.08) | 1.97 *** (0.10) | 0.53 * (0.34) | 0.91 (0.41) | 1.20 (1.06) |
L5cf | −0.06 * (0.02) | −0.05 * (0.02) | −0.19 (0.19) | −0.05 * (0.02) | −0.03 (0.02) | −0.08 (0.19) | ||
Time in MPA | 0.02 * (0.01) | 0.01 (0.01) | −0.00 (0.02) | 0.02 ** (0.01) | 0.02 * (0.01) | 0.02 (0.01) | ||
L5cf: Time in MPA | 0.00 (0.00) | 0.00 (0.00) | ||||||
Observations | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
R2/R2 adjusted | 0.47/0.42 | 0.37/0.32 | 0.58/0.50 | 0.60/0.48 | 0.34/0.29 | 0.51/0.47 | 0.6/0.53 | 0.60/0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchesano, M.; Carboni, A.; Tassino, B.; Silva, A. Circadian Rhythms, Regular Exercise, and Cognitive Performance in Morning-Trained Dancers. Clocks & Sleep 2025, 7, 7. https://doi.org/10.3390/clockssleep7010007
Marchesano M, Carboni A, Tassino B, Silva A. Circadian Rhythms, Regular Exercise, and Cognitive Performance in Morning-Trained Dancers. Clocks & Sleep. 2025; 7(1):7. https://doi.org/10.3390/clockssleep7010007
Chicago/Turabian StyleMarchesano, Mariana, Alejandra Carboni, Bettina Tassino, and Ana Silva. 2025. "Circadian Rhythms, Regular Exercise, and Cognitive Performance in Morning-Trained Dancers" Clocks & Sleep 7, no. 1: 7. https://doi.org/10.3390/clockssleep7010007
APA StyleMarchesano, M., Carboni, A., Tassino, B., & Silva, A. (2025). Circadian Rhythms, Regular Exercise, and Cognitive Performance in Morning-Trained Dancers. Clocks & Sleep, 7(1), 7. https://doi.org/10.3390/clockssleep7010007